Advertisement

Multiform and Extensor Calculus

  • Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablamowicz, R., Lounesto, P., and Maks, J., Conference Report: Second Workshop on “Clifford Algebras and their Applications in Mathematical Physics”, Found. Phys. 21, 735-748 (1991).CrossRefADSGoogle Scholar
  2. 2.
    Arcuri, R. C., Conformal and Critical Embedding, Infinite Magic Square and a New Clifford Product, J. Math. Phys. 32, 1890-1899 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Crumeyrolle, A., Orthogonal and Sympletic Clifford Algebras, Kluwer Acad. Publ., Dordrecht, 1990.Google Scholar
  4. 4.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Euclidean Clifford Algebra, Adv. Appl. Clifford Algebras 11, 1-21 (2001). [math-ph/0212043]Google Scholar
  5. 5.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Extensors, Adv. Appl. Clifford Algebras 11, 23-40 (2001). [math-ph/0212046]Google Scholar
  6. 6.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Metric Tensor Vs. Metric Extensor, Adv. Appl. Clifford Algebras 11, 41-48 (2001). [math-ph/0212048]Google Scholar
  7. 7.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Metric Clifford Algebra, Adv. Appl. Clifford Algebras 11, 49-68 (2001). [math-ph/0212049]Google Scholar
  8. 8.
    Frankel, T., The Geometry of Physics, Cambridge University Press, Cambridge, 1997.zbMATHGoogle Scholar
  9. 9.
    Hestenes, D., Sobczyk, G., Clifford Algebra to Geometric Calculus, D. Reidel Publ. Co., Dordrecht, 1984.zbMATHGoogle Scholar
  10. 10.
    Lawson, H. Blaine, Jr. and Michelson, M. L., Spin Geometry, Princeton University Press, Princeton, 1989.zbMATHGoogle Scholar
  11. 11.
    Lounesto, P., Clifford Algebras and Hestenes Spinors, Found. Phys. 23,1203–1237 (1993).CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    Lounesto, P., Clifford Algebras and Spinors, Cambridge Univ. Press, Cambridge, 1997.zbMATHGoogle Scholar
  13. 13.
    Moya, A. M., Fernández, V. V., and Rodrigues, W. A. Jr., Multivector Functions of a Real Variable, Adv. Appl. Clifford Algebras 11, 69-77 (2001). [math.GM/0212222]Google Scholar
  14. 14.
    Moya, A. M., Fernández, V. V., and Rodrigues, W. A. Jr., Multivector Functionals, Adv. Appl. Clifford Algebras 11, 93-103 (2001). [math.GM/0212224]MathSciNetCrossRefGoogle Scholar
  15. 15.
    Rodrigues, W. A. Jr., and Oliveira, E. Capelas de, A Comment on the Twin Paradox and the Hafele-Keating Experiment, Phys. Lett. A 140, 479-484 (1989).CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Rodrigues, W. A. Jr., and Rosa, M. A. F., The Meaning of Time in Relativity and Einstein’s Later View of the Twin Paradox, Found. Phys. 19, 705–724 (1989).CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations