Superparticles and Superfields

  • Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)


Dirac Equation Minkowski Spacetime Grassmann Variable Frenet Frame Grassmann Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berezin, F. A. and Marinov, M. S., Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics, Ann. Phys. 104, 336-362 (1977).zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Daviau, C., Equation de Dirac non Linéaire, Thèse de Doctorat, Univ. de Nantes, 1993.Google Scholar
  3. 3.
    Daviau, C., Solutions of the Dirac Equation and a non Linear Dirac Equation for the Hydrogen Atom, Adv. Appl. Clifford Alg. 7 (Supl.), 175–194 (1997).Google Scholar
  4. 4.
    Grib, A. A., and Rodrigues, W. A. Jr., Nonlocality in Quantum Physics, Kluwer Publ./ Plenum Publ., New York, 1999.Google Scholar
  5. 5.
    Rodrigues, W. A. Jr., The Relation between Dirac, Maxwell and Seiberg-Witten Equations, Int. J. Mathematics and Mathematical Sci. 2003, 2707-2734 (2003). [math-ph/0212034]Google Scholar
  6. 6.
    Rodrigues, W. A. Jr., Souza, Q. A. G, and Vaz, J. Jr, Spinor Fields and Superfields as Equivalence Classes of Exterior Algebra Fields, in R. Ablamowicz and P. Lounesto (eds.), Clifford Algebras and Spinor Structures, 177-198, Kluwer Acad. Publ., Dordrecht 1995.Google Scholar
  7. 7.
    Rodrigues, W. A. Jr., and Vaz Jr., From Electromagnetism to Relativistic Quantum Mechanics, Found. Phys. 28, 789-814 (1998).CrossRefMathSciNetGoogle Scholar
  8. 8.
    Salam, A. and Strathdeed, Supergauge Transformations, Nucl. Phys. B 76, 477-482 (1974).CrossRefADSGoogle Scholar
  9. 9.
    Varadarajan, V. S., Supersymmetry for Mathematicians: An Introduction, Courant Lecture Notes in Mathematics 11, Am. Math. Soc., Providence, 2000.Google Scholar
  10. 10.
    De Witt, B., Supermanifolds, Cambridge University Press, Cambridge, 1984.Google Scholar
  11. 11.
    Witten, E., A Note on the Antibracket Formalism, Mod. Phys. Lett. A 5, 487-494 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations