Advertisement

Maxwell, Dirac and Seiberg-Witten Equations

  • Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)

Keywords

Dirac Equation Maxwell Equation Minkowski Spacetime Kluwer Acad Plane Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campolattaro, A. A., New Spinor Representation of Maxwell Equations 2. Generalities, Int. J. Theor. Phys. 19, 127-138 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Campolattaro, A. A., Generalized Maxwell Equations and Quantum Mechanics 1. Dirac Equation for the Free Electron, Int. J. Theor. Phys. 19, 141-155 (1980).Google Scholar
  3. 3.
    Campolattaro, A. A., Generalized Maxwell Equations and Quantum Mechanics 2. Generalized Dirac Equation, Int. J. Theor. Phys. 19, 477-482 (1980).CrossRefGoogle Scholar
  4. 4.
    Campolattaro, A. A., From Classical Electrodynamics to Relativistic Quantum Mechanics, in J. Keller and Z. Ozwiecz (eds.), The Theory of the Electron, Adv. Appl. Clifford Algebras 7 (S), 167-173 (1997).Google Scholar
  5. 5.
    Campolattaro, A. A., New Spinor Representation of Maxwell Equations 1. Generalities, Int. J. Theor. Phys. 19, 99-126 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carvalho, A. L. T. and Rodrigues, W. A. Jr., The Non Sequitur Mathematics and Physics of the ‘New Electrodynamics’ Proposed by the AIAS group, Random Operators and Stochastic Equations 9, 161-206 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chown, M., Double or quit, New Scientist no. 2000 (October 14), 24-27 (2000).Google Scholar
  8. 8.
    Evans, M. W., The Elementary Static Magnetic Field of the Photon, Physica B 182, 227-236 (1992).CrossRefADSGoogle Scholar
  9. 9.
    Evans, M. W., Vigier, J. P., The Enigmatic Photon, vol. 1: The Field B(3), Kluwer Acad. Publ., Dordrecht, 1994.Google Scholar
  10. 10.
    Evans, M. W., Vigier, J. P., The Enigmatic Photon, vol. 2: Non Abelian Electrodynamics, Kluwer Acad. Publ., Dordrecht, 1995.Google Scholar
  11. 11.
    Evans, M. W., Vigier, J. P., Roy, S. and Jeffers, S., The Enigmatic Photon, vol. 3: Theory and Practice of the B(3) Field, Kluwer Acad. Publ., Dordrecht, 1996.Google Scholar
  12. 12.
    Evans, M. W., Vigier, J. P., Roy, S. and Hunter, G., The Enigmatic Photon, vol. 4: New Directions, Kluwer Acad. Publ., Dordrecht, 1998.Google Scholar
  13. 13.
    Evans, M. W., Vigier, J. P., The Enigmatic Photon, vol. 5: O(3) Electrodynamics, Kluwer Acad. Publ., Dordrecht, 1999.Google Scholar
  14. 14.
    Evans, M. W. and Crowell, L. B., Classical and Quantum Electrodynamics and the B (3) Field, World Sci. Publ. Co., Singapore, 2000.Google Scholar
  15. 15.
    Fushchich, W. I. and Nikitin, A. G., Symmetries of Maxwell Equations, D. Reidel Publ. Co., Dordrecht, 1987.zbMATHGoogle Scholar
  16. 16.
    Gsponer, A., On the “Equivalence” of Maxwell and Dirac Equations, Int. J. Theor. Phys. 41, 689-694 (2002).zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gursey, F. Contribution to the Quaternion Formalism in Special Relativity, Rev. Fac. Sci. Istanbul A 20, 149-171 (1956).MathSciNetGoogle Scholar
  18. 18.
    Hestenes, D., Spacetime Algebra, Gordon and Breach Sci. Publ., New York, 1966.Google Scholar
  19. 19.
    Jackson, J. D., Classical Electrodynamics, second edition, John Wiley & Sons, Inc., New York 1975.zbMATHGoogle Scholar
  20. 20.
    Jauch, J. M. and Rorlich, F., The Theory of Photons and Electrons, Springer-Verlag, Berlin, 1976.Google Scholar
  21. 21.
    Kurşunoğlu, B., Modern Quantum Theory, W. H. Fremman and Co., San Francisco and London, 1962.zbMATHGoogle Scholar
  22. 22.
    Landau, L.D. and Lifshitz, E. M., The Classical Theory of Fields, fourth revised English edition, Pergamon Press, New York, 1975.Google Scholar
  23. 23.
    Lochak, G., Wave Equation for a Magnetic Monopole, Int. J. Theor. Phys. 24, 1019-1050 (1985).CrossRefMathSciNetGoogle Scholar
  24. 24.
    Maia Jr., A., Recami, E., Rosa, M. A. F., Rodrigues Jr., W. A., Magnetic Monopoles Without String in the Kähler-Clifford Algebra Bundle, J. Math. Phys. 31, 502–505 (1990).zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Majorana, E., Teoria Relativistica di Particelle con Momento Intrinseco Arbitrario, N. Cimento 9, 335-344, (1932).zbMATHCrossRefGoogle Scholar
  26. 26.
    Maris, H., On the Fission of Elementary Particles and Evidence for Fractional Electrons in Liquid Helium, J. Low Temp. Phys. 120, 173-204 (2000).CrossRefGoogle Scholar
  27. 27.
    Naber, G. L., Topology, Geometry and Gauge Fields. Interactions, Appl. Math. Sci. 141, Springer-Verlag, New York, 2000.Google Scholar
  28. 28.
    Nicolescu, L. I., Notes on Seiberg-Witten Theory, Graduate Studies in Mathematics 28, Am. Math. Soc., Providence, Rohde Island, 2000.Google Scholar
  29. 29.
    Nash, C. and Sen, S., Topology and Geometry for Physicists, Academic Press, London, 1983.zbMATHGoogle Scholar
  30. 30.
    Oliveira, E. Capelas de, and Rodrigues, W. A. Jr., Subluminal, Luminal and Superluminal Wave Motion (Book in preparation 2007).Google Scholar
  31. 31.
    Rainich, G., Electrodynamics and General Relativity Theory, Am. Math. Soc. Trans. 27, 106-136 (1925).CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Rodrigues, W. A. Jr., and Lu, J. Y., On the Existence of Undistorted Progressive Waves (UPWs) of Arbitrary Speeds 0≤ υ<∞ in Nature, Found. Phys. 27, 435–508 (1997).CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    Rodrigues, W. A. Jr., and Tiomno, J., On Experiments to Detect Possible Failures of Relativity Theory, Found. Phys. 15, 995-961 (1985).CrossRefMathSciNetGoogle Scholar
  34. 34.
    Rodrigues, W. A. Jr., and Vaz, J. Jr, Subluminal and Superluminal Solutions in Vacuum of the Maxwell Equations and the Massless Dirac Equation. Talk presented at the International Conference on the Theory of the Electron, Mexico City, 1995, Advances in Appl. Clifford Algebras 7 (Sup.), 453-462 (1997).Google Scholar
  35. 35.
    Rodrigues, W. A. Jr., and Vaz Jr., From Electromagnetism to Relativistic Quantum Mechanics, Found. Phys. 28, 789-814 (1998).CrossRefMathSciNetGoogle Scholar
  36. 36.
    Rodrigues, W. A. Jr., and Maiorino, J. E., A Unified Theory for Construction of Arbitrary Speeds (0⩽ v <∞) Solutions of the Relativistic Wave Equations, Random Oper. Stochastic Equ. 4, 355-400 (1996).MathSciNetCrossRefGoogle Scholar
  37. 37.
    Rodrigues, W. A. Jr., The Relation between Dirac, Maxwell and Seiberg-Witten Equations, Int. J. Mathematics and Mathematical Sci. 2003, 2707-2734 (2003). [math-ph/0212034]zbMATHCrossRefGoogle Scholar
  38. 38.
    Sachs, M., General Relativity and Matter, D. Reidel, Dordrecht, 1982.zbMATHGoogle Scholar
  39. 39.
    Sallhöfer, H., Elementary Derivation of the Dirac Equations. X, Zeitschrift für Naturforschung 41a, 468-470 (1986).ADSGoogle Scholar
  40. 40.
    Sallhöfer, H., Maxwell-Dirac-Isomorphism. XI, Zeitschrift für Naturforschung 41a, 1087-1088 (1986).ADSGoogle Scholar
  41. 41.
    Sallhöfer, H., Maxwell-Dirac-Isomorphism. XII, Zeitschrift für Naturforschung 41a, 1335-1336 (1986).ADSGoogle Scholar
  42. 42.
    Sallhöfer, H., Maxwell-Dirac-Isomorphism. XI, Zeitschrift für Naturforschung 41a, 1431-1432 (1986).ADSGoogle Scholar
  43. 43.
    Seiberg, N. and Witten, E. Monopoles, Duality and Chiral Symmetry Breaking in N=2 QCD, Nucl. Phys. B 431, 581-640 (1994).CrossRefMathSciNetGoogle Scholar
  44. 44.
    Silverman, M. P., Waves and Grains, Princeton University Press, Princeton, 1998.Google Scholar
  45. 45.
    Simulik, V. M. and Krivisshi, I. Y., Slight Generalized Maxwell Classical Electrodynamics can be Applied to Inneratomic Phenomena, Ann. Fond. L. de Broglie 27, 303-328 (2002).Google Scholar
  46. 46.
    Vaz, J., Jr., Clifford Algebras and Witten’s Monopole Equations, in Apanasov, B. N., Bradlow, S. B., Rodrigues, W. A. Jr. and Uhlenbeck, K. K. (eds.), Geometry, Topology and Physics, W. de Gruyter, Berlin, 1997.Google Scholar
  47. 47.
    Vaz, J. Jr., and Rodrigues , W. A. Jr., On the Equivalence of Maxwell and Dirac Equations and Quantum Mechanics, Int. J. Theor. Phys. 32, 945-958 (1993).zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Vaz, J. Jr., and Rodrigues, W. A. Jr., Maxwell and Dirac Theories as an Already Unified Theory. Talk presented at the International Conference on the Theory of the Electron, Mexico City, 1995, Advances in Appl. Clifford Algebras 7 (Sup.), 369-386 (1997).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations