On the Many Faces of Einstein’s Equations

  • Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)


Gauge Theory Vector Bundle Bianchi Identity Principal Bundle Previous Chapter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baez, J. and Muniain, J. P., Gauge Fields, Knots and Gravity, World Scientific Publ. Co., Singapore, 1994.zbMATHGoogle Scholar
  2. 2.
    Benn, I. M., and Tucker, R. W., An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol, 1987.Google Scholar
  3. 3.
    Bleecker, D., Gauge Theory and Variational Principles, Addison-Wesley Publ. Co., Inc., Reading, MA, 1981.zbMATHGoogle Scholar
  4. 4.
    Carmeli, M., Group Theory and Relativity, McGraw-Hill Int. Publ. Co., New York, 1977.zbMATHGoogle Scholar
  5. 5.
    Choquet-Bruhat, Y., DeWitt-Morette, C. and Dillard-Bleick, M., Analysis, Manifolds and Physics (revisited edition), North Holland Publ. Co., Amsterdam, 1982.zbMATHGoogle Scholar
  6. 6.
    Frankel, T., The Geometry of Physics, Cambridge University Press, Cambridge, 1997.zbMATHGoogle Scholar
  7. 7.
    Göckler, M. and Schücker, T., Differential Geometry, Gauge Theories and Gravity, Cambridge University Press, Cambridge, 1987.Google Scholar
  8. 8.
    ch11:gronwaldhehlGronwald, F. and Hehl, F. W., On the Gauge Aspects of Gravity, in Bergmann, P. G., et al (eds.), Int. School of Cosmology and Gravitation: 14$th$Course: Quantum Gravity, May 1995, Erice, Italy, The Science and Culture Series 10,148-198, World Sci. Publ., River Edge, NJ, 1996. [gr-qc/9602013]Google Scholar
  9. 9.
    Kobayashi, S., and Nomizu, K., Foundations of Differential Geometry, vol. 1, Interscience Publishers, New York, 1963.Google Scholar
  10. 10.
    Lounesto, P., Scalar Product of Spinors and an Extension of the Brauer-Wall Groups, Found. Phys. 11, 721-740 (1981)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    Mielke, E. W., Geometrodynamics of Gauge Fields, Physical Research vol. 3, Akademie-Verlag, Berlin, 1987.Google Scholar
  12. 12.
    Nash, C. and Sen, S., Topology and Geometry for Physicists, Academic Press, London, 1983.zbMATHGoogle Scholar
  13. 13.
    Oliveira, E. Capelas de, and Rodrigues, W. A. Jr., Dotted and Undotted Spinor Fields in General Relativity, Int. J. Mod. Phys. D 13, 1637-1659 (2004).zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Palais, R.S., The Geometrization of Physics, Lecture Notes from a Course at the National Tsing Hua University, Hsinchu, Taiwan, 1981.Google Scholar
  15. 15.
    Rodrigues, W. A. Jr. and Oliveira, E. Capelas de, Clifford Valued Differential Forms, and Some Issues in Gravitation, Electromagnetism and textquotedblleft Unifiedtextquotedblright Theories, Int. J. Mod. Phys. D 13, 1879-1915 (2004). [math-ph/0407025]zbMATHCrossRefADSGoogle Scholar
  16. 16.
    Ryder, L. H., Quantum Field Theory (second edition), Cambridge Univ. Press, Cambridge, 1996.zbMATHGoogle Scholar
  17. 17.
    Sachs, M., Quantum Mechanics and Gravity, The Frontiers Science IV, Springer-Verlag, Berlin, 2004.zbMATHGoogle Scholar
  18. 18.
    Sachs, M., General Relativity and MatterD. Reidel, Dordrecht, 1982.Google Scholar
  19. 19.
    Sternberg, S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.zbMATHGoogle Scholar
  20. 20.
    Wallner, R. P., Notes on the Gauge Theory of Gravitation, Acta Phys. Austriaca 54, 165-189 (1982).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations