Advertisement

Gravitational Theory in Minkowski Spacetime

  • Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)

Keywords

Minkowski Spacetime Geometric Algebra Gravitational Theory Timelike Curve Graviton Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrams, L. S., Alternative Space-Time for the Point Mass, Phys. Rev. D 20, 2474-2479 (1979). [gr-qc/0201044]CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G., Gravitational Energy-Momentum Density in Teleparallel Gravity, Phys. Rev. Lett. 84, 4533-4536 (2000).CrossRefADSMathSciNetGoogle Scholar
  3. 3.
    Chapline, G., Dark Energy Stars, Proc. of the Texas Conference on Relativistic Astrophysics, Stanford, CA, Dec. 2004. [astro-ph/0503200]Google Scholar
  4. 4.
    Cooperstock, F. I. and Tieu, S., Closed Timelike Curves Re-examined. [gr/qc/0495114]Google Scholar
  5. 5.
    Davies, P., How to Build Time Machines, Allen Lane, The Penguin Press, London, 2001.Google Scholar
  6. 6.
    Doran, C. and Lasenby, A., Geometric Algebra for Physicists, Cambridge University Press, Cambridge, 2003.zbMATHGoogle Scholar
  7. 7.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Euclidean Clifford Algebra, Adv. Appl. Clifford Algebras 11, 1-21 (2001). [math-ph/0212043]Google Scholar
  8. 8.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Extensors, Adv. Appl. Clifford Algebras 11, 23-40 (2001). [math-ph/0212046]Google Scholar
  9. 9.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Metric Tensor Vs. Metric Extensor, Adv. Appl. Clifford Algebras 11, 41-48 (2001). [math-ph/0212048]Google Scholar
  10. 10.
    Fernández, V. V., Moya, A. M. and Rodrigues, W. A. Jr., Metric Clifford Algebra, Adv. Appl. Clifford Algebras 11, 49-68 (2001). [math-ph/0212049]Google Scholar
  11. 11.
    Fernández, V. V., Moya, A. M., and Rodrigues, W. A. Jr., Covariant Derivatives on Minkowski Manifolds, in R. Ablamowicz and B. Fauser (eds.), Clifford Algebras and their Applications in Mathematical Physics (Ixtapa-Zihuatanejo, Mexico 1999), vol.1, Algebra and Physics, Progress in Physics 18, pp 373-398, Birkhäuser, Boston, Basel and Berlin, 2000.Google Scholar
  12. 12.
    Frankel, T., The Geometry of Physics, Cambridge University Press, Cambridge, 1997.zbMATHGoogle Scholar
  13. 13.
    Gott, J. Richard, Time Travel in Einstein’s Universe, Weidenfeld & Nicolson, London, 2001.Google Scholar
  14. 14.
    Hawking, S. W., The Information Paradox for Black Holes, Lecture at the 17 th Int. Conf. on General Relativity and Gravitation, July 2004, Dublin, http://www.gr17.com.Google Scholar
  15. 15.
    Hayard, S. A., The Disinformation Problem for Black Holes, 14 th Workshop on General Relativity and Gravitation, Kyoto University, Dec. 2004. [gr-qc/0504037]Google Scholar
  16. 16.
    Hayashi, K. and Shirafuji. T., New General Relativity, Phys. Rev. D 19, 3542-3553 (1979).CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Lasenby, A., Doran, C. and Gull, S., Gravity, Gauge Theories and Geometric Algebras, Phil. Trans. R. Soc. 356, 487-582 (1998).zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Logunov, A. A., Mestvirishvili, M. A., The Relativistic Theory of Gravitation, Mir Publ., Moscow, 1989.zbMATHGoogle Scholar
  19. 19.
    Logunov, A. A., Relativistic Theory of Gravity, Nova Science Publ., New York, 1999.Google Scholar
  20. 20.
    Maluf, J. W., Hamiltonian Formulation of the Teleparallel Description of General Relativity, J. Math. Phys. 35, 335-343 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Mottola, E. and Mazur, P., Gravitational Condensate Stars, Proc. Nat. Acad. Sci. 111, 9550-9546 (2004).Google Scholar
  22. 22.
    Moya, A. M., Fernández, V. V., and Rodrigues, W. A. Jr., Multivector Functions of a Real Variable, Adv. Appl. Clifford Algebras 11, 69-77 (2001). [math.GM/0212222]Google Scholar
  23. 23.
    Moya, A. M., Fernández, V. V., and Rodrigues, W. A. Jr., Multivector Functions of a Multivector Variable, Adv. Appl. Clifford Algebras 11, 79-91 (2001). [math.GM/0212223]Google Scholar
  24. 24.
    Moya, A. M., Fernández, V. V., and Rodrigues, W. A. Jr., Multivector Functionals, Adv. Appl. Clifford Algebras 11, 93-103 (2001). [math.GM/0212224]MathSciNetCrossRefGoogle Scholar
  25. 25.
    Notte-Cuello, E., da Rocha, R. and Rodrigues, W. A. Jr., The Effective Lorentzian and Teleparallel Spacetimes Generated by a Free Electromagnetic Field. [gr-qc/0612098]Google Scholar
  26. 26.
    Notte-Cuello, E. and Rodrigues, W. A. Jr., A Maxwell Like Formulation of Gravitational Theory in Minkowski Spacetime. [math-ph/0608017].Google Scholar
  27. 27.
    Novikov, I. D., The River of Time, Cambridge University Press, Cambridge, 1998.zbMATHGoogle Scholar
  28. 28.
    da Rocha, R. and Rodrigues, W. A. Jr., The Einstein-Hilbert Lagrangian Density in a 2-Dimensional Spacetime is an Exact Differential, Mod. Phys. Lett.A 21, 1519-1527 (2006). [hep-th/0512168]zbMATHCrossRefADSGoogle Scholar
  29. 29.
    Stravroulakis, N., Vérité Scientifique et Trous Noirs. Le Abus du Formalism, Ann. Fond. L. de Broglie 24, 67-108 (1999).ADSGoogle Scholar
  30. 30.
    Thirring, W., Classical Field Theory, vol. 2, Springer-Verlag, New York, 1980.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations