• Waldyr Alves RodriguesJr
  • Edmundo Capelas de Oliveira
Part of the Lecture Notes in Physics book series (LNP, volume 722)


Minkowski Spacetime Dirac Spinor Inertial Reference Frame Riemann Curvature Tensor Puncture Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Andrade, V. C., Guillen, L. C. T., and Pereira, J. G., Gravitational Energy-Momentum Density in Teleparallel Gravity, Phys. Rev. Lett. 84, 4533-4536 (2000).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Bogolubov, N. N., Logunov, A. A., and Todorov, I. T., Introduction to Axiomatic Quantum Field Theory, W. A. Benjamin, Inc., Reading, MA, 1975.Google Scholar
  3. 3.
    Clarke, C. J. S., On the Global Isometric Embedding of Pseudo-Riemannian Manifolds, Proc. Roy. Soc. A 314, 417-428 (1970).zbMATHCrossRefADSGoogle Scholar
  4. 4.
    Eddington, A. S., The Mathematical Theory of Relativity, 3rd edn., Chelsea, New York, 1975.Google Scholar
  5. 5.
    Evans, M. W. and Crowell, L.B., Classical and Quantum Electrodynamics and the B ³ Field, World Sci. Publ. Co., Singapore, 2000.Google Scholar
  6. 6.
    Evans, M. W., The Elementary Static Magnetic Field of the Photon, Physica B 182, 227-236 (1992).CrossRefADSGoogle Scholar
  7. 7.
    Evans, M. W., Vigier, J. P., Roy, S. and Hunter, G., The Enigmatic Photon, vol. 4: New Directions, Kluwer Acad. Publ., Dordrecht, 1998.Google Scholar
  8. 8.
    Evans, M. W., Vigier, J. P., Roy, S. and Jeffers, S., The Enigmatic Photon, vol. 3: Theory and Practice of the B(3) Field, Kluwer Acad. Publ., Dordrecht, 1996.Google Scholar
  9. 9.
    Evans, M. W. and Vigier, J. P., The Enigmatic Photon, vol. 5: O(3) Electrodynamics, Kluwer Acad. Publ., Dordrecht, 1999.Google Scholar
  10. 10.
    Evans, M. W. and Vigier, J. P., The Enigmatic Photon, vol. 1: The Field B(3), Kluwer Acad. Publ., Dordrecht, 1994.Google Scholar
  11. 11.
    Evans, M. W. and Vigier, J. P., The Enigmatic Photon, vol. 2: Non Abelian Electrodynamics, Kluwer Acad. Publ., Dordrecht, 1995.Google Scholar
  12. 12.
    Heaviside, O., On the Forces, Stresses and Fluxes of Energy in the Electromagnetic Field, Phil. Trans. Roy. Soc. London A183, 423–480 (1893).ADSGoogle Scholar
  13. 13.
    Landau, L.D. and Lifshitz, E. M., The Classical Theory of Fields, fourth revised English edition, Pergamon Press, New York, 1975.Google Scholar
  14. 14.
    Logunov, A. A., Relativistic Theory of Gravity, Nova Science Publ., New York, 1999.Google Scholar
  15. 15.
    Logunov, A. A. and Mestvirishvili, M. A., The Relativistic Theory of Gravitation, Mir Publ., Moscow, 1989.zbMATHGoogle Scholar
  16. 16.
    Maluf, J. W., Hamiltonian Formulation of the Teleparallel Description of General Relativity, J. Math. Phys. 35, 335-343 (1994).zbMATHCrossRefADSMathSciNetGoogle Scholar
  17. 17.
    Maxwell, J. C., A Treatise on Electricity & Magnetism, vols. 1 and 2, (third edition, Clarendon Press, 1891), nDover Publ. Inc., New York, 1954.Google Scholar
  18. 18.
    Nakahara, Geometry, Topology and Physics, Institute of Physics Publ., Bristol and Philadelphia, 1990.zbMATHCrossRefGoogle Scholar
  19. 19.
    Oliveira, E. Capelas de, and Rodrigues, W. A. Jr., Subluminal, Luminal and Superluminal Wave Motion (Book in preparation 2007).Google Scholar
  20. 20.
    Rapoport, D. C., Riemann-Cartan-Weyl Quantum Geometry I. Laplacians and Supersymmetric Systems, Int. J. Theor. Phys. 35, 287-309 (1996).zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Rembielinski, J., Tachyons and Preferred Frames, Int. J. Mod. Phys. A 12, 1677–1709 (1997).zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Rembielinski, J., Quantization of the Tachyonic Field and the Preferred Frame, (1995). [hep-ph/9509219]Google Scholar
  23. 23.
    Rembielinski, J., Superluminal Phenomena and the Quantum Preferred Frame, (2000). [quant-ph/0010026]Google Scholar
  24. 24.
    Rodrigues, W. A. Jr., Algebraic and Dirac-Hestenes Spinors and Spinor Fields, J. Math. Physics 45, 2908-2944 (2004). [math-ph/0212030]zbMATHCrossRefADSGoogle Scholar
  25. 25.
    Rodrigues, W. A. Jr., Souza, Q. A. G and ., Bozhkov, Y., The Mathematical Structure of Newtonian Spacetime: Classical Dynamics and Gravitation, Found. Phys. 25, 871–924 (1995).CrossRefMathSciNetADSGoogle Scholar
  26. 26.
    Sachs, R. K., and Wu, H., General Relativity for Mathematicians, Springer-Verlag, New York, 1977.zbMATHGoogle Scholar
  27. 27.
    Souza, Q. A., and Rodrigues, W. A. Jr., Differential Geometry in the Clifford Bundle, in eLetelier, P., and Rodrigues, W. A. Jr. (eds.), Gravitation: The Spacetime Structure, World Scientific Publ. Co., Singapore, 1994.Google Scholar
  28. 28.
    Volovik, G. E., The Universe in a Liquid Droplet, Clarendon Press, Oxford, 2003.Google Scholar
  29. 29.
    Weinberg, S., Gravitation and Cosmology, J. Wiley and Sons, Inc., New York, 1972.Google Scholar
  30. 30.
    Whittaker, E. T., A History of the Theories of Aether and Electricity, vols. I and II, Humanities Press, New York, 1973.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Waldyr Alves RodriguesJr
    • 1
  • Edmundo Capelas de Oliveira
    • 1
  1. 1.Universidade Estadual Campinas, Instituto de Matemática Estatística e Computação CientíficaCampinasBrasil

Personalised recommendations