A Clustering-Based Approach for Tracing Object-Oriented Design to Requirement

  • Xin Zhou
  • Hui Yu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4422)


Capturing the traceability relationship between software requirement and design allows developers to check whether the design meets the requirement and to analyze the impact of requirement changes on the design. This paper presents an approach for identifying the classes in object-oriented software design that realizes a given use case, which leverages ideas and technologies from Information Retrieval (IR) and Text Clustering area. First, we represent the use case and all classes as vectors in a vector space constructed with the keywords coming from them. Then, the classes are clustered based on their semantic relevance and the cluster most related to the use case is identified. Finally, we supplement the raw cluster by analyzing structural relationships among classes. We conduct an experiment by using this clustering-based approach to a system – Resource Management Software. We calculate and compare the precision and recall of our approach and non-clustering approaches, and get promising results.


Object-oriented software development Requirement Traceability Use Case Class Clustering 


  1. 1.
    Jarke, M.: Requirements Tracing. Communications of the ACM 41(12), 32–36 (1998)CrossRefGoogle Scholar
  2. 2.
    Pohl, K.: PRO-ART: Enabling Requirements Pre- Traceability. In: Proceedings of the Second International Conference on Requirements Engineering, pp. 76–84. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  3. 3.
    Jacobson, I.: Object-Oriented Software Engineering. Addison-Wesley, Reading (1992)zbMATHGoogle Scholar
  4. 4.
    Brooks, R.: Towards a theory of the comprehension of computer programs. International Journal of an-Machine Studies 18, 543–554 (1983)MathSciNetCrossRefGoogle Scholar
  5. 5.
    van Rijsbergen, C.J.: Information Retrieval. Butterworths, London (1979)Google Scholar
  6. 6.
    Frakes, W., Baeza-Yates, R.: Information Retrieval: Data Structures & Algorithms. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  7. 7.
    Bhatia, S.K., Deogun, J.S.: Conceptual clustering in information retrieval. IEEE Transactions on Systems, Man and Cybernetics, Part B 28(3), 427–436 (1998)CrossRefGoogle Scholar
  8. 8.
    Kaski, S.: Dimensionality reduction by random mapping: fast similarity computation for clustering. In: Proceedings of the 1998 IEEE International Joint Conference on Neural Networks Proceedings, pp. 413–418 (1998)Google Scholar
  9. 9.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Jones, K.S., Walker, S., Robertson, S.E.: A probabilistic model of information retrieval: development and status. Information Processing and Management 36(6), 809–840 (2000)CrossRefGoogle Scholar
  12. 12.
    Harman, D.: Ranking algorithms. In: Information Retrival: Data Structures and Algorithms, pp. 363–392. Prentice-Hall, Englewood Cliffs (1992)Google Scholar
  13. 13.
    Antoniol, G., Caprile, B., Potrich, A., Tonella, P.: Design-Code Traceability for Object Oriented Systems. The Annals of Software Eng. 9, 35–58 (2000)CrossRefGoogle Scholar
  14. 14.
    Antoniol, G., Canfora, G., Casazza, G., DeLucia, A., Merlo, E.: Recovering Traceability Links between Code and Documentation. IEEE Transactions on Software Engineering 28(10), 970–983 (2002)CrossRefGoogle Scholar
  15. 15.
    Garg, P.K., Scacchi, W.: SODOS: a software documentation support environment-its definition. IEEE Transactions on Software Engineering (August 1986)Google Scholar
  16. 16.
    Zisman, A., Spanoudakis, G., Perez-Minana, E., Krause, P.: Tracing software requirement artifacts. In: The 2003 International Conference on Software Engineering Research and Practice, Las Vegas, Nevada, USA (2003)Google Scholar
  17. 17.
    Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible Consistency Checking. ACM Transactions in Software Engineering and Methodology 12(1), 28–63 (2003)CrossRefGoogle Scholar
  18. 18.
    Jarke, M., Gallersdoerfer, R., Jeusfeld, M., Staudt, M., Eherer, S.: TMConceptBase–A Deductive Object Base for Meta Data Management. Int’l J. Intelligent Information Systems 5(3), 167–192 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Xin Zhou
    • 1
  • Hui Yu
    • 2
  1. 1.IBM China Research LabChina
  2. 2.Peking UniversityChina

Personalised recommendations