Skip to main content

Numerical Verification of the Hasselmann equation

  • Chapter
Tsunami and Nonlinear Waves

Summary

The purpose of this article is numerical verification of the thory of weak turbulence. We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical equations describing potential flow of the ideal fluid with a free surface and, solution of the kinetic Hasselmann equation, describing the wave ensemble in the framework of the theory of weak turbulence. Comparison of the results demonstrates pretty good applicability of the weak turbulent approach. In both cases we observed effects predicted by this theory: frequency downshift, angular spreading as well as formation of Zakharov-Filonenko spectrum I ωω −4. To achieve quantitative coincidence of the results obtained by different methods one has to accomplish the Hasselmann kinetic equation by an empirical dissipation term S diss modeling the coherent effects of white-capping. Adding of the standard dissipation terms used in the industrial wave predicting model (WAM) leads to significant improvement but not resolve the discrepancy completely, leaving the question about optimal choice of S diss open.

Numerical modeling of swell evolution in the framework of the dynamical equations is affected by the side effect of resonances sparsity taking place due to finite size of the modeling domain. We mostly overcame this effect using fine integration grid of 512 × 4096 modes. The initial spectrum peak was located at the wave number k = 300. Similar conditions can be hardly realized in the laboratory wave tanks. One of the results of our article consists in the fact that physical processes in finite size laboratory wave tanks and in the ocean are quite different, and the results of such laboratory experiments can be applied to modeling of the ocean phenomena with extra care. We also present the estimate on the minimum size of the laboratory installation, allowing to model open ocean surface wave dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nordheim LW (1928) Proc.R.Soc. A119:689

    Article  Google Scholar 

  2. Peierls R (1929) Ann. Phys. (Leipzig) 3:1055

    Article  Google Scholar 

  3. Zakharov VE, Falkovich G, Lvov VS (1992) Kolmogorov Spectra of Turbulence I. Springer-Verlag, Berlin

    Google Scholar 

  4. Hasselmann K (1962) J.Fluid Mech. 12:1

    Article  Google Scholar 

  5. Zakharov VE, Filonenko NN (1966) Doklady Acad. Nauk SSSR 160:1292

    Google Scholar 

  6. Pushkarev AN, Zakharov VE (1996) Phys. Rev. Lett. 76:3320

    Article  Google Scholar 

  7. Pushkarev AN (1999) European Journ. of Mech. B/Fluids 18:345

    Article  Google Scholar 

  8. Pushkarev AN, Zakharov VE (2000) Physica D 135:98

    Article  Google Scholar 

  9. Tanaka M (2001) Fluid Dyn. Res. 28:41

    Article  Google Scholar 

  10. Onorato M, Osborne AR, Serio M, at al. (2002) Phys. Rev. Lett. 89:144501 arXiv:nlin.CD/0201017

    Article  Google Scholar 

  11. Dysthe KB, Trulsen K, Krogstad HE, Socquet-Juglard H (2003) J. Fluid Mech. 478:1–10

    Article  Google Scholar 

  12. Dyachenko AI, Korotkevich AO, Zakharov VE (2003) JETP Lett. 77:546 arXiv:physics/0308101

    Article  Google Scholar 

  13. Dyachenko AI, Korotkevich AO, Zakharov VE (2004) Phys. Rev. Lett. 92:134501 arXiv:physics/0308099

    Article  Google Scholar 

  14. Yokoyama N (2004) J. Fluid Mech. 501:169

    Article  Google Scholar 

  15. Zakharov VE, Korotkevich AO, Pushkarev AN, Dyachenko AI (2005) JETP Lett. 82:487 arXiv:physics/0508155.

    Article  Google Scholar 

  16. Dysthe K, Socquet-Juglard H, Trulsen K, at al. (2005) In “Rogue waves”, Proceedings of the 14th’ Aha Huliko’a Hawaiian Winter Workshop 91

    Google Scholar 

  17. Lvov Yu, Nazarenko SV, Pokorni B (2006) Physica D 218:24 arXiv:mathph/0507054

    Article  Google Scholar 

  18. Nazarenko SV (2006) J. Stat. Mech. L02002 arXiv:nlin.CD/0510054

    Google Scholar 

  19. Annenkov SYu, Shrira VI (2006) Phys. Rev. Lett. 96:204501

    Article  Google Scholar 

  20. Dyachenko AI, Newell AC, Pushkarev AN, Zakharov VE (1992) Physica D 57:96

    Article  Google Scholar 

  21. Korotkevich AO (2003) Numerical Simulation of Weak Turbulence of Surface Waves. PhD thesis, L.D. Landau Institute for Theoretical Physics RAS, Moscow, Russia

    Google Scholar 

  22. Dyachenko AI, Korotkevich AO, Zakharov VE (2003) JETP Lett. 77:477 arXiv:physics/0308100

    Article  Google Scholar 

  23. Zakharov VE (1968) J. Appl. Mech. Tech. Phys. 2:190

    Google Scholar 

  24. Zakharov VE (1999) Eur. J. Mech. B/Fluids 18:327

    Article  Google Scholar 

  25. Kolmogorov A (1941) Dokl. Akad. Nauk SSSR 30:9 [Proc. R. Soc. London A434, 9 (1991)].

    Google Scholar 

  26. V. E. Zakharov (1967) PhD thesis, Budker Institute for Nuclear Physics, Novosibirsk, USSR

    Google Scholar 

  27. Zakharov VE, Zaslavskii MM (1982) Izv. Atm. Ocean. Phys. 18:747

    Google Scholar 

  28. Toba Y (1973) J. Oceanogr. Soc. Jpn. 29:209

    Article  Google Scholar 

  29. Donelan MA, Hamilton J, Hui WH (1985) Phil. Trans. R. Soc. London A315:509

    Article  Google Scholar 

  30. Hwang PA, at al. (2000) J. Phys. Oceanogr 30:2753

    Article  Google Scholar 

  31. Dyachenko AI, Zakharov VE (1994) Phys. Lett., A190:144

    Google Scholar 

  32. Hasselmann S, Hasselmann K, Barnett TP (1985) J. Phys. Oceanogr. 15:1378

    Article  Google Scholar 

  33. Dungey JC, Hui WH (1985) Proc. R. Soc. A368:239

    Google Scholar 

  34. Masuda A (1981) J. Phys. Oceanogr. 10:2082

    Article  Google Scholar 

  35. Masuda A (1986) in Phillips OM, Hasselmann K, Waves Dynamics and Radio Probing of the Ocean Surface. Plenum Press, New York

    Google Scholar 

  36. Lavrenov IV (1998) Mathematical modeling of wind waves at non-uniform ocean. Gidrometeoizdat, St.Petersburg, Russia

    Google Scholar 

  37. Polnikov VG (2001) Wave Motion 1008:1

    Google Scholar 

  38. Webb DJ (1978) Deep-Sea Res. 25:279

    Article  Google Scholar 

  39. Resio D., Tracy B (1982) Theory and calculation of the nonlinear energy transfer between sea waves in deep water. Hydraulics Laboratory, US Army Engineer Waterways Experiment Station, WIS Report 11

    Google Scholar 

  40. Resio D, Perrie W (1991) J.Fluid Mech. 223:603

    Article  Google Scholar 

  41. Pushkarev A, Resio D, Zakharov VE (2003) Physica D 184:29

    Article  Google Scholar 

  42. Pushkarev A, Zakharov VE (2000) 6th International Workshop on Wave Hind-casting and Forecasting, November 6–10, Monterey, California, USA), 456 (published by Meteorological Service of Canada)

    Google Scholar 

  43. Badulin SI, Pushkarev A, Resio D, Zakharov VE (2005) Nonlinear Processes in Geophysics

    Google Scholar 

  44. SWAN Cycle III user manual, http://fluidmechanics.tudelft.nl/swan/index.htm

    Google Scholar 

  45. Zakharov VE, Guyenne P, Dias F (2001) Wave turbulence in one-dimensional models. Physica D, 152–153:573

    Article  Google Scholar 

  46. Dias F, Pushkarev A, Zakharov VE (2004) One-Dimensional Wave Turbulence. Physics Reports, 398:1 (2004).

    Article  Google Scholar 

  47. Dias F, Guyenne P, Pushkarev A, Zakharov VE (2000) Wave turbulence in one-dimensional models. Preprint N2000-4, Centre de Methematiques et del leur Appl., E.N.S de CACHAN, 1

    Google Scholar 

  48. Guyenne P, Zakharov VE, Dias F (2001) Turbulence of one-dimensional weakly nonlinear dispersive waves. Contemporary Mathematics, 283:107

    Google Scholar 

  49. Frigo M, Johnson SG (2005) Proc. IEEE 93:216 http://fftw.org.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korotkevich, A.O., Pushkarev, A.N., Resio, D., Zakharov, V.E. (2007). Numerical Verification of the Hasselmann equation. In: Kundu, A. (eds) Tsunami and Nonlinear Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71256-5_7

Download citation

Publish with us

Policies and ethics