Skip to main content

On the modelling of huge water waves called rogue waves

  • Chapter
Tsunami and Nonlinear Waves
  • 1394 Accesses

Summary

The chapter focuses on the physics and modelling of the extreme water wave events called rogue waves. A particular attention is paid to their formation in presence of strong wind. Two mechanisms producing the giant waves are considered: The dispersive spatio-temporal focusing and the modulational instability. In both cases an amplification of the height and duration of the rogue wave event is observed under wind action.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. I. Banner and W.K. Melville (1976) On the separation of air flow over water waves, J. Fluid Mech. 77, 825–842.

    Article  Google Scholar 

  2. T.B. Benjamin and J.E. Feir 1967 The desintegration of wave trains on deep water. Part 1. Theory., J. Fluid Mech. 27, 417–430.

    Article  Google Scholar 

  3. D. Clamond and J. Grue (2002) Interaction between envelope solitons as a model for freak wave formation. Pt 1: Long-time interaction, C.R. Mecanique 330, 575–580.

    Article  Google Scholar 

  4. D. Clamond, M. Francius, J. Grue and C. Kharif (2006) Strong interaction between envelope solitary surface gravity waves, Eur. J. Mech. B/Fluids, 25(5), 536–553.

    Article  Google Scholar 

  5. F. Dias and C. Kharif (1999) Nonlinear gravity and capillary-gravity waves, Annu. Rev. Fluid Mech. 31, 301–346.

    Article  Google Scholar 

  6. D.G. Dommermuth and D.K.P. Yue (1987) A high-order spectral method for the study of nonlinear gravity waves, J. Fluid Mech. 184, 267–288.

    Article  Google Scholar 

  7. K.B. Dysthe (2001) Modelling a “Rogue Wave”-Speculations or a realistic possibility?, Rogues Waves 2000 edited by M. Olagnon and G.A. Athanassoulis (Brest, France), 255–264, 2001.

    Google Scholar 

  8. J.P. Giovanangeli, C. Kharif and E. Pelinovsky (2004) Experimental study of the wind effect on the focusing of transient wave groups, Proc. of abtracts of Rogue waves 2004, Brest.

    Google Scholar 

  9. H. Jeffreys (1925) On the formation of wave by wind, Proc. Roy. Soc. A 107, 189–206.

    Article  Google Scholar 

  10. C. Kharif and A. Ramamonjiarisoa (1988) Deep water gravity wave instabilities at large steepness, Phys. Fluids 31, 1286–1288.

    Article  Google Scholar 

  11. C. Kharif and E. Pelinovsky (2003) Physical mechanisms of the rogue wave phenomenon, Eur. J. Mech. B/Fluids 22, 603–634.

    Article  Google Scholar 

  12. I.V. Lavranov (1998) The wave energy concentration at the Agulhas current off South Africa, Natural Hazards 17, 117–127.

    Article  Google Scholar 

  13. G. Lawton (2001) Monsters of the deep (The perfect wave), New Scientist 170(2297), 28–32.

    Google Scholar 

  14. M.S. Longuet-Higgins (1985) Bifurcation in gravity waves, J. Fluid Mech. 151, 457–475.

    Article  Google Scholar 

  15. S.R. Massel (1996) Ocean surface waves: Their physics and prediction, Word Scientific, Singapour.

    Google Scholar 

  16. J.W. McLean (1982) Instabilities of finite-amplitude water waves, J. Fluid Mech. 114, 315–330.

    Article  Google Scholar 

  17. J.W. McLean, Y.C. Ma, D.U. Martin, P.G. Saffman and H.C. Yuen (1981) Three-dimensional instability of finite-amplitude water waves, Phys. Rev. Lett. 46, 817–820.

    Article  Google Scholar 

  18. E. Pelinovsky, T. Talipova and C. Kharif (2000) Nonlinear dispersive mechanism of the freak wave formation in shallow water, Physica D 147(1–2), 83–94.

    Article  Google Scholar 

  19. P. Peterson, T. Soomere, J. Engelbrecht and E. van Groesen (2003) Soliton interaction as a possible model for extreme waves, Nonlinear Processes in Geophysics 10, 503–510.

    Google Scholar 

  20. T. Soomere and J. Engelbrecht (2005) Extreme elevations and slopes of interacting solitons in shallow water, Wave Motion 41, 179–192.

    Article  Google Scholar 

  21. C. Skandrani, C. Kharif and J. Poitevin (1996) Nonlinear evolution of water surface waves: The frequency downshifting phenomenon, Contemp. Math. 200, 157–171.

    Google Scholar 

  22. A. Slunyaev, C. Kharif, E. Pelinovsky and T. Talipova (2002) Nonlinear wave focusing on water of finite depth, Physica D 173(1–2),77–96.

    Article  Google Scholar 

  23. R. Smith (1976) Giant waves, J. Fluid Mech. 77, 417–431.

    Article  Google Scholar 

  24. H.U. Sverdrup and W.H. Munk (1947) Wind, sea, and swell; theory of relations for forecasting, U.S. Navy Hydrographic Office, H.O. 601.

    Google Scholar 

  25. J. Touboul, J.P. Giovanangeli, C. Kharif and E. Pelinovsky (2006) Freak waves under the action of wind: Experiments and simulations, Eur. J. Mech. B/Fluids 25, 662–676.

    Article  Google Scholar 

  26. B.S. White and B. Fornberg (1998) On the chance of freak waves at the sea, J. Fluid Mech. 255, 113–138.

    Article  Google Scholar 

  27. G.B. Whitham (1965) A general approach to linear and non-linear dispersive waves using a Lagrangian, J. Fluid Mech. 22, 273–283.

    Article  Google Scholar 

  28. G.B. Whitham (1967) Nonlinear dispersion of water waves, J. Fluid Mech. 27, 399–412.

    Article  Google Scholar 

  29. C.H. Wu and A. Yao (2004) Laboratory measurements of limiting freak waves on currents, J. Geophys. Res. 109, C12002, 1–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kharif, C. (2007). On the modelling of huge water waves called rogue waves. In: Kundu, A. (eds) Tsunami and Nonlinear Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71256-5_6

Download citation

Publish with us

Policies and ethics