Skip to main content

Biological Network Inference Using Redundancy Analysis

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4414))

Abstract

The paper presents MRNet, an original method for inferring genetic networks from microarray data. This method is based on Maximum Relevance – Minimum Redundancy (MRMR), an effective information-theoretic technique for feature selection.

MRNet is compared experimentally to Relevance Networks (RelNet) and ARACNE, two state-of-the-art information-theoretic network inference methods, on several artificial microarray datasets. The results show that MRNet is competitive with the reference information-theoretic methods on all datasets. In particular, when the assessment criterion attributes a higher weight to precision than to recall, MRNet outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ideker, T., Galitski, T., Hood, L.: A new approach to decoding life: Systems biology. Annual Review of Genomics and Human Genetics 2, 343–372 (2001)

    Article  Google Scholar 

  2. van Someren, E.P., Wessels, L.F.A., Backer, E., Reinders, M.J.T.: Genetic network modeling. Pharmacogenomics 3, 507–525 (2002)

    Article  Google Scholar 

  3. Liang, S., Fuhrman, S., Somogyi, R.: REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. In: Altman, R.B., Dunker, A.K., Hunter, L., Klein, T.E. (eds.) Pacific Symposium on Biocomputing, vol. 3, pp. 18–29. World Scientific Publishing, Singapore (1998)

    Google Scholar 

  4. Akutsu, T., Miyano, S., Kuhara, S.: Inferring qualitative relations in genetic networks and metabolic pathways. Bioinformatics 16, 727–734 (2000)

    Article  Google Scholar 

  5. Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18, 261–274 (2002)

    Article  Google Scholar 

  6. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian Networks to Analyze Expression Data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  7. Pe’er, D., Regev, A., Elidan, G., Friedman, N.: Inferring subnetworks from perturbed expression profiles. Bioinformatics 17, S215–S224 (2001)

    Google Scholar 

  8. van Berlo, R.J.P., van Someren, E.P., Reinders, M.J.T.: Studying the conditions for learning dynamic bayesian networks to discover genetic regulatory networks. SIMULATION 79, 689–702 (2003)

    Google Scholar 

  9. Butte, A.J., Kohane, I.S.: Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurments. In: Pacific Symposium on Biocomputing, vol. 5, pp. 415–426 (2000)

    Google Scholar 

  10. de la Fuente, A., Bing, N., Hoeschele, I., Mendes, P.: Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20, 3565–3574 (2004)

    Article  Google Scholar 

  11. Schäfer, J., Strimmer, K.: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21, 754–764 (2005)

    Article  Google Scholar 

  12. Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R., Califano, A.: ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7 (2006)

    Article  Google Scholar 

  13. Tourassi, G., Frederick, E., Markey, M.: Application of the mutual information criterion for feature selection in computer-aided diagnosis. Medical Physics 28, 2394 (2001)

    Article  Google Scholar 

  14. Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. Journal of Bioinformatics and Computational Biology 3, 185–205 (2005)

    Article  Google Scholar 

  15. Meyer, P.E., Bontempi, G.: On the use of variable complementarity for feature selection in cancer classification. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 91–102. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Butte, A., Tamayo, P., Slonim, D., Golub, T., Kohane, I.: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences 97, 12182–12186 (2000)

    Article  Google Scholar 

  17. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley, New York (1990)

    Google Scholar 

  18. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 1226–1238 (2005)

    Article  Google Scholar 

  19. Merz, P., Freisleben, B.: Greedy and local search heuristics for unconstrained binary quadratic programming. Journal of Heuristics 8, 1231–1381 (2002)

    Article  Google Scholar 

  20. Rogers, S., Girolami, M.: A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21, 3131–3137 (2005)

    Article  Google Scholar 

  21. Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H., Verschoren, A., De Moor, B., Marchal, K.: SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC Bioinformatics 7, 43 (2006)

    Article  Google Scholar 

  22. Paninski, L.: Estimation of entropy and mutual information. Neural Computation 15, 1191–1253 (2003)

    Article  MATH  Google Scholar 

  23. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. Proceedings of the Twelfth International Conference on Machine Learning 202, 194–202 (1995)

    Google Scholar 

  24. Beirlant, J., Dudewica, E., Gyofi, L., van der Meulen, E.: Nonparametric entropy estimation: An overview. Journal of Statistics (1997)

    Google Scholar 

  25. Provost, F., Fawcett, T., Kohavi, R.: The case against accuracy estimation for comparing induction algorithms. In: Proceedings of the Fifteenth International Conference on Machine Learning, pp. 445–453. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  26. Bockhorst, J., Craven, M.: Markov networks for detecting overlapping elements in sequence data. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 193–200. MIT Press, Cambridge (2005)

    Google Scholar 

  27. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  28. van Rijsbergen, C.J.: Information Retrieval. Buttersworth, London (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sepp Hochreiter Roland Wagner

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Meyer, P.E., Kontos, K., Bontempi, G. (2007). Biological Network Inference Using Redundancy Analysis. In: Hochreiter, S., Wagner, R. (eds) Bioinformatics Research and Development. BIRD 2007. Lecture Notes in Computer Science(), vol 4414. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71233-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71233-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71232-9

  • Online ISBN: 978-3-540-71233-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics