Notions of Attractivity and Bifurcation

Part of the Lecture Notes in Mathematics book series (LNM, volume 1907)

In this chapter, new concepts of (local) attractivity and repulsivity (in Section 2.3) and bifurcation and transition (in Section 2.5) are introduced for nonautonomous dynamical systems. By a bifurcation and transition, a qualitative change of attractivity or repulsivity is meant. Due to the nonautonomous framework, it is distinguished between four distinct points of view concerning di.erent time domains. The notions of attractivity and repulsivity—and for this reason also the notions of bifurcation and transition—are introduced for the past (past attractivity and repulsivity), the future (future attractivity and repulsivity), the entire time (all-time attractivity and repulsivity) and the present (finite-time attractivity and repulsivity) of the system.


Banach Space Random Dynamical System Transcritical Bifurcation Random Attractor Pullback Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Personalised recommendations