Skip to main content

Siderophores of Symbiotic Fungi

  • Chapter
Microbial Siderophores

Part of the book series: Soil Biology ((SOILBIOL,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci USA 96:3404–3411

    Article  PubMed  CAS  Google Scholar 

  • Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. BioMetals 14:33–42

    Article  PubMed  CAS  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    Article  CAS  Google Scholar 

  • Caris C, Hördt W, Hawkins H-J, Römheld V, George E (1998) Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza 8:35–39

    Article  CAS  Google Scholar 

  • Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization — a review. Catena 39:121–146

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biol Biochem 28:1495–1503

    Article  CAS  Google Scholar 

  • Cress WA, Johnson GV, Barton LL (1986) The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. J Plant Nutr 9:547–556

    Google Scholar 

  • Crittenden PD, Porter N (1991) Lichen-forming fungi: potential sources of novel metabolites. Trends Biotechnol 9:409–414

    Article  PubMed  CAS  Google Scholar 

  • Crittenden PD, David JC, Hawksworth DL, Campbell FS (1995) Attempted isolation and success in the culturing of a broad spectrum of lichen-forming and lichenicolous fungi. New Phytol 130:267–297

    Article  Google Scholar 

  • Dobernigg B, Haselwandter K (1992) Effect of ferric iron on the release of siderophores by ericoid mycorrhizal fungi. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. University Press, Cambridge, UK, pp 252–257

    Google Scholar 

  • Drechsel H, Jung G, Winkelmann G (1992) Stereochemical characterization of rhizoferrin and identification of its dehydration products. BioMetals 5:141–148

    Article  CAS  Google Scholar 

  • Essen SA, Bylund D, Holmström SJM, Moberg M, Lundström US (2006) Quantification of hydroxamate siderophores in soil solutions of podzolic soil profiles in Sweden. BioMetals 19:269–282

    Article  PubMed  CAS  Google Scholar 

  • Federspiel A, Schuler R, Haselwandter K (1991) Effect of pH, L-ornithine and L-proline on the hydroxamate siderophore production by Hymenoscyphus ericae, a typical ericoid mycorrhizal fungus. Plant Soil 130:259–261

    Article  CAS  Google Scholar 

  • Gargas A, DePriest PT, Taylor JW (1995) Positions of multiple insertions in SSU rDNA of lichen-forming fungi. Mol Biol Evol 12:208–218

    PubMed  CAS  Google Scholar 

  • George E, Römheld V, Marschner H (1994) Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis Publishers, Boca Raton FL, pp 93–109

    Google Scholar 

  • Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H (2003) Characterization of Aspergillus nidulans transporters for siderophores enterobactin and triacetylfusarinine C. Biochem J 371:505–513

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K (1995) Mycorrhizal fungi: siderophore production. Crit Rev Biotechnol 15:287–291

    Article  CAS  Google Scholar 

  • Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. For Ecol Manage 81:1–17

    Article  Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and sub-dominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia (Berlin) 45:57–62

    Article  Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root-fungus association in two Carex species of high-alpine plant communities. Oecologia (Berlin) 53:352–354

    Article  Google Scholar 

  • Haselwandter K, Winkelmann G (2002) Ferricrocin — an ectomycorrhizal siderophore of Cenococcum geophilum. BioMetals 15:73–77

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Krismer R, Holzmann HP, Reid CPP (1988) Hydroxamate siderophore content of organic fertilizers. J Plant Nutr 11:959–967

    CAS  Google Scholar 

  • Haselwandter K, Dobernigg B, Beck W, Jung G, Cansier A, Winkelmann G (1992) Isolation and identification of hydroxamate siderophores of ericoid mycorrhizal fungi. Biometals 5:51–56

    Article  CAS  Google Scholar 

  • Haselwandter K, Passler V, Reiter S, Schmid DG, Nicholson G, Hentschel P, Albert K, Winkelmann G (2006) Basidiochrome — a novel siderophore of the orchidaceous mycorrhizal fungi Ceratobasidium and Rhizoctonia spp. BioMetals 19:335–343

    Article  PubMed  CAS  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000) A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enb1p) in Saccharomyces cerevisiae. BioMetals 13:65–72

    Article  PubMed  CAS  Google Scholar 

  • Hoffland E, Kuyper TW, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2:258–264

    Article  Google Scholar 

  • Honegger R (1998) The lichen symbiosis: what is so special about it? Lichenologist 30:193–212

    Google Scholar 

  • Jalal MAF, van der Helm D (1989) Siderophores of highly phytopathogenic Alternaria longipes. Biol Metals 2:11–17

    Article  CAS  Google Scholar 

  • Jalal MAF, Love SK, van der Helm D (1988) N-alpha-dimethylcoprogens. Three novel trihydroxamate siderophores from pathogenic fungi. Biol Metals 1:4–8

    Article  CAS  Google Scholar 

  • Jumpponen AM, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Manulis S, Kashman Y, Barash I (1987) Identification of siderophores and siderophore-mediated uptake of iron in Stemphylium botryosum. Phytochemistry 26:1317–1320

    Article  CAS  Google Scholar 

  • Passler V (1998) Siderophorenproduktion von drei Orchideenmykorrhizapilzen im Vergleich zu Rhizoctonia endophytica var. endophytica in Abhängigkeit von pH und Eisenverfügbarkeit. MSc Thesis, University of Innsbruck, Austria

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. NRC Research Press, Ottawa

    Google Scholar 

  • Piercey MM, Graham SW, Currah RS (2004) Patterns of genetic variation in Phialocephala fortinii across a broad latitudinal transect in Canada. Mycol Res 108:955–964

    Article  PubMed  CAS  Google Scholar 

  • Powell PE, Cline GR, Reid CPP, Szaniszlo PJ (1980) Occurrence of hydroxamate siderophore iron chelators in soils. Nature (London) 287:833–834

    Article  CAS  Google Scholar 

  • Prabhu V, Biolchini PF, Boyer GL (1996) Detection and identification of ferricrocin produced by ectendomycorrhizal fungi in the genus Wilcoxina. BioMetals 9:229–234

    Article  CAS  Google Scholar 

  • Purakayastha TJ, Singh CS, Chonkar PK (1998) Growth and iron nutrition of broccoli (Brassica oleracea L. var. italica Plenck), grown in a Typic Ustochrept, as influenced by vesicular-arbuscular mycorrhizal fungi in the presence of pyrite and farmyard manure. Biol Fertil Soils 27:35–38

    Article  CAS  Google Scholar 

  • Rai R (1988) Interaction response of Glomus albidus and Cicer Rhizobium strains on iron uptake and symbiotic N2-fixation in calcareous soil. J Plant Nutr 11:863–869

    CAS  Google Scholar 

  • Reiter S (1999) Einfluss von pH-Wert und Eisenverfügbarkeit auf die Siderophorenbildung durch vier typische Mykorrhizapilzarten der Orchidaceae. MScThesis, University of Innsbruck, Austria

    Google Scholar 

  • Renshaw JC, Robson GD, Trinci APJ, Wiebe MG, Livens FR, Collison D, Taylor RJ (2002) Fungal siderophores: structures, functions and applications. Mycol Res 106:1123–1142

    Article  CAS  Google Scholar 

  • Richardson DHS (1999) War in the world of lichens: parasitism and symbiosis as exemplified by lichens and lichenicolous fungi. Mycol Res 103:641–650

    Article  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. J Exp Med 200:1213–1219

    Article  PubMed  CAS  Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Schuler R, Haselwandter K (1988) Hydroxamate siderophore production by ericoid mycorrhizal fungi. J Plant Nutr 11:907–913

    CAS  Google Scholar 

  • Shaw G, Leake JR, Baker AJM, Read DJ (1990) The biology of mycorrhiza in the Ericaceae. XVII. The role of mycorrhizal infection in the regulation of iron uptake by ericaceous plants. New Phytol 115:251–258

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Stenroos S, Stocker-Woergoetter E, Yoshimura I, Myllys L, Thell A, Hyvonen J (2003) Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Can J Bot 81:232–247

    Article  CAS  Google Scholar 

  • Szaniszlo PJ, Powell PE, Reid CPP, Cline GR (1981) Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia 73:1158–1174

    Article  CAS  Google Scholar 

  • Thanh VN, van Dyk MS, Wingfield MJ (2002) Debaromyces mycophilus sp.nov., a siderophore-dependent yeast isolated from woodlice. FEMS Yeast Res 2:415–427

    PubMed  CAS  Google Scholar 

  • van Hees PAW, Rosling A, Essen S, Godbold DL, Jones DL, Finlay RD (2006) Oxalate and ferricrocin exudation by the extramatrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. New Phytol 169:367–377

    Article  PubMed  CAS  Google Scholar 

  • Vosatka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, pp 235–247

    Google Scholar 

  • Watteau F, Berthelin J (1994) Mineral dissolution of iron and aluminium from soil minerals: efficiency and specificity of hydroxamate siderophores compared to aliphatic acids. Eur J Soil Biol 30:1–9

    CAS  Google Scholar 

  • Wilcox HE (1991) Mycorrhizae. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Dekker, New York, pp 731–765

    Google Scholar 

  • Winkelmann G (1992) Structures and functions of fungal siderophores containing hydroxamate and complexone type iron binding ligands. Mycol Res 96:529–534

    Article  CAS  Google Scholar 

  • Winkelmann G (2001) Siderophore transport in fungi. In: Winkelmann G (ed) Microbial transport systems. Wiley-VCH, Weinheim, pp 463–480

    Chapter  Google Scholar 

  • Winkelmann G (2004) Ecology of siderophores. In: Crosa JH, Mey AR, Payne SM (eds) Iron transport in bacteria. ASM Press, Washington DC, pp 437–450

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haselwandter, K., Winkelmann, G. (2007). Siderophores of Symbiotic Fungi. In: Varma, A., Chincholkar, S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71160-5_4

Download citation

Publish with us

Policies and ethics