Skip to main content

Microbial Siderophore: A State of Art

  • Chapter
Microbial Siderophores

Part of the book series: Soil Biology ((SOILBIOL,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbhaiya HB, Rao KK (1985) Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 27:233–235

    Article  CAS  Google Scholar 

  • Boukhalfa H, Crumbliss A (2002) Chemical aspects of siderophore mediated iron transport. BioMetals 15:325–339

    Article  PubMed  CAS  Google Scholar 

  • Baukhalfa HJ, Lack SD, Hersman RL, Neu MP (2002) Siderophore production and facilitated uptake of iron and plutonium in P. putida AIP Conf Proc 673(1):343–344

    Google Scholar 

  • Braud A, Jezequel K, Leger MA, Lebeau T (2006) Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb). Biotechnol Bioeng 94:1080–1088

    Article  PubMed  CAS  Google Scholar 

  • Brem D, Pelludat C, Rakin A, Jacobi CA, Heesemann J (2001) Functional analysis of yersiniabactin transport genes of Yersinia enterocolitica. Microbiology 147(5):1115–1127

    PubMed  CAS  Google Scholar 

  • Budzikiewicz W (1993) Secondary metabolites from fluorescent Pseudomonads. FEMS Microbiol Rev 204:209–228

    Google Scholar 

  • Castignetti D, Smarrelli J (1986) Siderophores, the iron nutrition of plants and nitrate reductases. FEBS Lett 209:147–151

    Article  CAS  Google Scholar 

  • Chambers CE, McIntyre DD, Mouck M, Sokol PA (1996) Physical and structural characterization of yersiniophore, a siderophore produced by clinical isolates of Yersinia enterocolitica. Biometals 9:157–167

    Article  PubMed  CAS  Google Scholar 

  • Chaudhari BL (1998) Studies on siderophores of Curvularia lunata NCIM 716. PhD Thesis, North Maharashtra University, Jalgaon

    Google Scholar 

  • Chincholkar SB, Sukhodolskaya GV, Baklashova TG, Koscheyenko KA (1993) Characteristics of the 11β-hydroxylation of steroid compounds by Curvularia lunata VKM F-644 mycelium, in the presence of β-cyclodextrin. Appl Biochem Microbiol 28:517–524

    Google Scholar 

  • Chincholkar SB, Rane MR, Chaudhari BL (2005) Siderophores: their biotechnological applications. In: Podila GK, Varma A (eds) Biotechnological applications: microbes; Microbiology Series, IK International, New Delhi, pp 177–198

    Google Scholar 

  • Cox CD (1982) Effect of pyochelin on the virulence of Pseudomonas aeruginosa. Infect Immun 36:17–23

    PubMed  CAS  Google Scholar 

  • De Lorenzo V, Wee S, Herrero M, Page WJ (1987) Operator sequences of the aerobactin operon of plasmid Col IV K30 binding the ferric uptake regulation (fur) repressor. J Bacteriol 169:2624–2630

    PubMed  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux JP, Hofte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

    Article  PubMed  Google Scholar 

  • Digat B, Mattar J (1990) Effects of temperature on growth and siderophore production of Pseudomonas fluorescence-putida. Symbiosis 9:203–207

    Google Scholar 

  • Eissendle M, Oberegger H, Zadra I, Hass H (2003) The siderophore system is essential for viability of Aspegillus nidulus: functional analysis of two genes encoding l-ornithine Nmonooxygenase (Sid A) and a non-ribosomal peptide synthesis (Sid C); Mol Microbiol 49:359–375

    Article  CAS  Google Scholar 

  • Faraldo-Gómez JD, Sansom MSP (2003) Acquisition of iron-siderophores in Gram-negative bacteria. Nat Rev Mol Cell Biol 4:105–116

    Article  PubMed  CAS  Google Scholar 

  • Faraldo-Gómez JD, Smith GR, Sansom MSP (2002) Molecular dynamics simulations of the bacterial outer membrane protein FhuA: a comparative study of the ferrichrome-free and bound states; Biophys J 85:1406–1420

    Google Scholar 

  • Hesseltine CW, Pidacks C, Whiteball AR, Bononos N, Hutchings BL, Williams JH (1952) Coprogen, a new growth factor for coprophillic fungi. J Am Chem Soc 74:1362

    Article  CAS  Google Scholar 

  • Hubmacher D, Matzanke BF, Anemuller S (2002) Investigations of iron uptake in Halobacterium salinarum. Biochem Soc Transac 30:710–712

    Article  CAS  Google Scholar 

  • Jalal MAF, van der Helm D (1991) Isolation and spectroscopic identification of fungal siderophores. Winkelmann G (ed) CRC Press, Boca Raton, Florida, pp 235–269

    Google Scholar 

  • Karamanoli K, Lindow SE (2006) Disruption of N-acyl homoserine lactone-mediated cell signaling and iron acquisition in epiphytic bacteria by leaf surface compounds. Appl Environ Microbiol [Epub ahead of print]

    Google Scholar 

  • Katayama N, Nozaki Y, Okonogi K, Harada S, Ono H (1993) Ferrocins, new iron-containing peptide antibiotics produced by bacteria taxonomy, fermentation and biological activity. J Antibiot 46:65–70

    PubMed  CAS  Google Scholar 

  • Kim EJ, Sabra W, Zeng AP (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology 149:2627–2634

    Article  PubMed  CAS  Google Scholar 

  • Kraemer SM (2004) Iron oxide dissolution and solubility in presence of siderophores. Aquat Sci 66:3–18

    CAS  Google Scholar 

  • Lankford CE (1973) Bacterial assimilation of iron. Crit Rev Microbiol 2:273–331

    CAS  Google Scholar 

  • Lehoux DE, Sanschagrin F, Levesque RC (2000) Genomics of the 35-kb pvd locus and analysis of novel pvdIJK genes implicated in pyoverdine biosynthesis in Pseudomonas aeruginosa FEMS. Microbiol Lett 190:141–146

    Article  CAS  Google Scholar 

  • Liles MR, Scheel TA, Cianciotto NP (2000) Discovery of a nonclassical siderophore, legiobactin, produced by strains of Legionella pneumophila. J Bacteriol 182:749–757

    Article  PubMed  CAS  Google Scholar 

  • Manninen E, Mattila-Sandholm T (1994) Methods for the detection of Pseudomonas siderophores. J Microbiol Meth 19:223–234

    Article  CAS  Google Scholar 

  • Manwar AV (2001) Application of microbial iron chelators (Siderophores) for improving yield of groundnut. PhD Thesis, North Maharashtra University, Jalgaon

    Google Scholar 

  • Maurer B, Muller A, Keller-Schierlein W, Zahner H (1968) Metabolic products of microorganisms 61 Ferribactin, a siderochrome from Pseudomonas fluorescens Migula. Arch Mikrobiol 60:326–339

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens: biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    CAS  Google Scholar 

  • Meyer JM, Hohnadel D, Halle F (1989) Cepabactin from Pseudomonas cepacia, a new type of siderophores. J Gen Microbiol 135:1479–1487

    PubMed  CAS  Google Scholar 

  • Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523

    PubMed  CAS  Google Scholar 

  • Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C, Anjaiah V, Cornelis P (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492

    Article  PubMed  CAS  Google Scholar 

  • Naphade BS (2002) Studies on the application of Siderophoregenic E. cloacae as a biocontrol agent. PhD Thesis, North Maharashtra University, Jalgaon

    Google Scholar 

  • Ockels W, Römer A, Budzikiewicz H (1978) An Fe(III) complex of pyridine-2,6-di-(monothiocarboxylic acid)—a novel bacterial metabolic product. Tetrahedron Lett 1978:3341–3342

    Article  Google Scholar 

  • Oger R, Lopez M, Farrand SK (2001) Iron-binding compounds from Agrobacterium Spp: biological control strain Agrobacterium rhizogenes K84 produces a hydroxamate siderophores. Appl Environ Microbiol 67:654–664

    Article  PubMed  Google Scholar 

  • Ong SA, Peterson T, Neilands JB (1979) Agrobactin, a siderophore from Agrobacterium tumefaciens. J Biol Chem 254:1860–1865

    PubMed  CAS  Google Scholar 

  • Pandey A, Bringel F, Meyer JM (1994) Iron requirement and search for siderophores in lactic acid bacteria; Appl Microbiol Biotech 40:735–739

    Article  CAS  Google Scholar 

  • Park CS, Paulitz TC, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non pathogenic isolates off Fusarium oxysporum. Phytopathology 78:190–194

    Google Scholar 

  • Patil BB (1998) Studies on the role of iron metabolism in biotransformation with special reference to hydroxylation of progesterone and oxidation of rifamycin B. PhD Thesis, North Maharashtra University, Jalgaon

    Google Scholar 

  • Perry RD, Balbo PB, Jones HA, Fetherston JD, DeMoll E (1999) Yersiniabactin from Yersinia pestis: biochemical characterization of the siderophore and its role in iron transport and regulation. Microbiology 145:1181–1190

    Article  PubMed  CAS  Google Scholar 

  • Persmark M, Frejd T, Mattiasson B (1990) Purification, characterization and structure of pseudobactin 589 A, a siderophore from a plant growth promoting Pseudomonas. Biochem. 29:7348–7356

    Article  CAS  Google Scholar 

  • Rane MR, Naphade BS, Sayyed RZ, Chincholkar SB (2004) Methods for microbial iron chelator (siderophore) analysis. In: Podila GK, Varma A (eds) Basic research and applications of Mycorrhizae; Microbiology Series. IK International, New Delhi, 475–492

    Google Scholar 

  • Reeves M, Pine L, Neilands JB, Ballows A (1983) Absence of siderophore activity in Legionella sp. grown in iron deficient media. J Bacteriol 154:324–329

    PubMed  CAS  Google Scholar 

  • Risse D, Beiderbeck H, Taraz K, Budzikiewicz H, Gustine D (1998) Corrugatin, a lipopeptide siderophore from Pseudomonas corrugate. Z Naturforsch 53:295–304

    CAS  Google Scholar 

  • Sokol PA (1984) Production of the ferripyochelin outer membrane receptor by Pseudomonas species. FEMS Microbiol Lett 23:313–317

    Article  CAS  Google Scholar 

  • Stephan H, Freund S, Beck W, Jung G, Winkelmann G (1993) Ornibactins — a new family of siderophores from Pseudomonas. BioMetals 6:93–100

    Article  PubMed  CAS  Google Scholar 

  • Sukhodolskaya GV, Gulevskaya SA, Chincholkar SB, Koscheyenko KA, Joshi AK, Bihari V, Basu SK (1996) Steroid 11 β-hydroxylase activity of Curvularia lunata VKM-F-644 and its stabilization factors. Appl Biochem Microbiol 32:63–71

    Google Scholar 

  • Yancey RJ, Finkelstein RA (1981) Siderophore production by pathogenic Neissria sp. Infect Immun 32:600–608

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chincholkar, S.B., Chaudhari, B.L., Rane, M.R. (2007). Microbial Siderophore: A State of Art. In: Varma, A., Chincholkar, S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71160-5_12

Download citation

Publish with us

Policies and ethics