Skip to main content

Biotechnological Production of Siderophores

  • Chapter
Microbial Siderophores

Part of the book series: Soil Biology ((SOILBIOL,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albesa I, Barberes LI, Pajaro MC, Craso AJ (1985) Pyoverdine production by Pseudomonas fluorescentes in synthetic media with various sources of nitrogen J Gen Microb 131:3251–3254

    CAS  Google Scholar 

  • Barbahaiya HB, Rao KK (1985) Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 27:233–235

    Article  Google Scholar 

  • Boruah HPD, Kumar BSD (2002) Biological activity of secondary metabolites produced by strain of Pseudomonas fluorescens. Folia Microbiol 47:359–363

    CAS  Google Scholar 

  • Braud A, Jézéquel K, Léger MA, Lebeau T (2006) Siderophore production by using free and immobilized cells of two pseudomonads cultivated in a medium enriched with Fe and/or toxic metals (Cr, Hg, Pb). Biotechnol Bioeng 94:1080–1088

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228

    Article  CAS  Google Scholar 

  • Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch 52C:713–720

    Google Scholar 

  • Bultreys A, Gheysen D (2000) Production and comparison of peptide siderophores from strains of distantly related pathovars of Pseudomonas syringae and Pseudomonas viridiflava LMG 2352. Appl Environ Microbiol 66:325–331

    PubMed  CAS  Google Scholar 

  • Buysens S, Heunges K, Poppe J, Höfte M (1996) Involvement of pyochelin and pyoverdine in suppression of phythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Casida LE Jr (1992) Competitive ability and survival in soil of Pseudomonas strain 679-2 a dominant, nonobligate bacterial predator of bacteria. Appl Environ Microbiol 58:32–37

    PubMed  Google Scholar 

  • Champomier-Verges MC, Stintzi A, Meyer JM (1996) Acquisition of iron by the non-siderophore-producing Pseudomonas fragi. Microbiology 142:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Cohen JI, Falconi C, Komen J (1998) Strategic decisions for agricultural biotechnology: synthesis of four policy seminars. ISNAR Briefing Paper 38:1–11. ISSN 1021-2310

    Google Scholar 

  • Demange P, Wenderbaum S, Bateman A, Dell A, Abdallah MA (1987) Bacterial siderophores: structure and physicochemical properties of pyoverdins and related compounds. In: Winkelman G, Helm DVD, Neilands JB (eds) Iron transport in microbes, plants and animals. VCH, Weinkeim, pp 167–187

    Google Scholar 

  • Dave BP, Dube HC (2000) Detection and chemical characterization of siderophores of rhizobacterial fluorescent pseudomonads. Indian Phytopathol 53:97–98

    Google Scholar 

  • De Meyer G, Höfte M (1997) Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87:588–593

    Article  PubMed  Google Scholar 

  • Défago G, Haas D (1990) Pseudomonads as antagonists of soilborne plant pathogens. Modes of action and genetic analysis. In: Bollag JM, Stotzky YG (eds) Soil biochemistry, vol 6. Marcel Dekker, New York Basel, pp 249–291

    Google Scholar 

  • Díaz de Villegas ME (1999) Evaluation of siderophore production by Pseudomonas spp. MSc Thesis. Faculty of Biology, Havana University (in Spanish)

    Google Scholar 

  • Díaz de Villegas ME, Villa P, Frías A (2002) Evaluation of the siderophores production by Pseudomonas aeruginosa PSS. Rev Latinoam Microb 44:112–117

    Google Scholar 

  • Digat B, Mattar J (1990) Effects of temperature on growth and siderophore production of Pseudomonas fluorescents-putida. Symbiosis 9:203–207

    Google Scholar 

  • Duffy BK, Défago G (1999) Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65:2429–2438

    PubMed  CAS  Google Scholar 

  • Dunn GM (1985) Nutritional requirements of microorganism. In: Moo-Youg M (ed) Comprehensive biotechnology, vol 1. Pergamon Press, pp 113–125

    Google Scholar 

  • Elliot HA, Huang CP (1979) The effect of complex formation on the adsorption characteristic of heavy metals. Environ Int 2:145–152

    Article  Google Scholar 

  • Fujimoto DK, Weller DM, Thomashow LS (1995) Role of secondary metabolites in root disease suppression. In: Inderjit KMM, Dakshini, Einhellig FA (eds) Allelopathy, organisms, processes and applications. ACS. Symposium Series 582, American Chemical Society, Washington, DC, pp 330–347

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15:353–378

    Article  PubMed  CAS  Google Scholar 

  • Höfte M, Buysens S, Koldam N, Cornelis P(1993) Zinc affects siderophore-mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Bio-Metals 6:85–91

    Google Scholar 

  • Huntr IS (1985) Assimilation of nitrogen. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1. Pergamon Press, pp 141–155

    Google Scholar 

  • Johnová A. Dobisová M, Abdallah MA, Kyslik P (2001) Overproduction of pyoverdins by Fur mutants of Pseudomonas aeruginosa strains PAO1 and Fe10 in stirred bioreactors. Biotechnol Lett 23:1759–1763

    Article  Google Scholar 

  • Kerster K, Ludwig W, Vancanneyt M, De Vos P, Gillis M, Schleifer K-H (1996) Recent changes in the classification of the Pseudomonads: an overview. Sys Appl Microbiol 19:465–477

    Google Scholar 

  • Kim EJ, Sabra W, Zeng AP (2003) Iron deficiency leads to inhibition of oxygen transfer and enhanced formation of virulence factors in cultures of Pseudomonas aeruginosa PAO1. Microbiology 149:2627–2634

    Article  PubMed  CAS  Google Scholar 

  • King EO, Ward MK, Raney DE (1954) Two simple media for the demostration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307

    PubMed  CAS  Google Scholar 

  • Laine MH, Karwoski MT, Raaska L, Mattila-Sandholm T (1996) Antimicrobial activity of Pseudomonas spp. against food poisoning bacteria and moulds. Lett Appl Microbiol 22:214–218

    PubMed  CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijil H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS 374. Phytopathology 85:149–155

    Article  Google Scholar 

  • Liebman M, Gallandt ER (1997) Many little hammers: ecological approaches for management of crop-weed interactions In: Jackson LE (ed) Ecology in agriculture. Academic Press, San Diego CA, pp 291–343

    Google Scholar 

  • Linget C, Slylianou DG, Dell A, Wolff RE, Piémont Y, Abdallah MA (1992) Bacterial siderophores: the structure of a desferribactin produced by Pseudomonas fluorescens ATTC 13525. Tetrahedron Lett 33:3851–3854

    Article  CAS  Google Scholar 

  • Loper JE, Schroth MN (1986) Importance of siderophores in microbial interactions in the Rhizosphere. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum Press, New York, pp 85–98.

    Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    CAS  Google Scholar 

  • Loper JE, Henkels MD (1997) Availability of iron to Pseudomonas fluorescens in rhizosphere and bulk soil evaluated with an ice nucleation reporter. Gene Appl Environ Microbiol 99–105

    Google Scholar 

  • Manninen E, Mattila-Sandholm T (1994) Methods for the detection of Pseudomonas siderophores. J Microbiol Meth 19:223–234

    Article  CAS  Google Scholar 

  • Mark GL, Morrissey JP, Higgins P, O’Gara F (2006) Molecular-based strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol Ecol 56:167–177

    Article  PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of gacA gene and the pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore Pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  PubMed  CAS  Google Scholar 

  • Messenger AJM, Ratledge C (1985) Siderophores. In: Moo-Youg M (ed) Comprehensive biotechnology, vol 3. Pergamon Press, pp 275–294

    Google Scholar 

  • Meyer JM, Abdallah MA (1978) The fluorescent pigment of Pseudomonas fluorescens. Biosynthesis, purification and physicochemical properties. J Gen Microbiol 107:319–328

    CAS  Google Scholar 

  • Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect Immun 64:518–523

    PubMed  CAS  Google Scholar 

  • Montesinos E, Bonaterra A, Badosa E, Francãç J, Alemany J, Llorente I, Moragrega C (2002) Plant-microbe interactions and the new biotechnological methods of plant disease control. Int Microbiol 5:169–175

    Article  PubMed  CAS  Google Scholar 

  • Morris J, O’Sullivan DJ, Koster M, Leong J, Weisbeek PJ, O’Gara F (1992) Characterization of fluorescent siderophore-mediated iron uptake in Pseudomonas sp.strain M11114: evidence for the existence of an additional ferric siderophore receptor. Appl Environ Microbiol 58:630–635

    PubMed  CAS  Google Scholar 

  • Nagarajkumar M, Bhaskaran R, Velazhahan R (2004) Involvement of secondary metabolites and extracellular lytic enzymes produced by Pseudomonas fluorescens in inhibition of Rhizoctonia solani, the rice sheath blight pathogen. Microbiol Res 159:73–81

    Article  PubMed  CAS  Google Scholar 

  • Nautiyal CS, Johri JK, Singh HB (2003) Survival of the rhizosphere-competent biocontrol strain Pseudomonas fluorescens NBR 12650 in the soil and phytosphere. Can J Microbiol 48:588–601

    Article  Google Scholar 

  • Neilands JB (1982) Microbial envelope proteins related to iron. Annu Rev Microbiol 36:285–309

    Article  PubMed  CAS  Google Scholar 

  • Neilands JB (1984) Methodology of siderophores. Struct Bond 58:1–24

    CAS  Google Scholar 

  • Nowak-Thompson B, Gould SJ (1994) A simple assay for fluorescent siderophores produced by Pseudomonas species and an efficient isolation of pseudobactin. BioMetals 7:20–24

    Article  PubMed  CAS  Google Scholar 

  • Ochsner UA, Wilderman PJ, Vasil AI, Vasil ML (2002) GeneChip iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ (1984) Family I Pseudomonadaceae. In: Krieg NR, Holt JG (eds) Bergey’s Manual of systematic bacteriology, vol 1. The Williams and Wilkins Co Baltimore, Md, pp 141–199

    Google Scholar 

  • Park CS, Paulitz TC, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and non pathogenic isolates off Fusarium oxysporum. Phytopathology 78:190–194

    Google Scholar 

  • Raaska L, Viikari L, Mattila-Sandholm T (1993) Detection of siderophores in growing cultures of Pseudomonas spp.. J Ind Microbiol 11:181–186

    Article  CAS  Google Scholar 

  • Sabra W, Zeng A-P, Lünsdorf H, Deckwer W-D (2000) Effect of oxygen on formation and structure of Azotobacter vinelandii alginate and its role in protecting nitrogenase. Appl Environ Microbiol 66:4037–4044

    Article  PubMed  CAS  Google Scholar 

  • Sabra W, Kim EJ, Zeng AP (2002) Physiological responses of Pseudomonas aeruginosa PAO1 to oxidative stress in controlled microaerobic and aerobic cultures. Microbiology 148:3195–3202

    PubMed  CAS  Google Scholar 

  • Slininger PJ, Shea-Wilbur MA (1995) Liquid-culture pH, temperature, and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol 43:794–800

    Article  PubMed  CAS  Google Scholar 

  • Slininger PJ, VanCauwenberge JE, Shea-Wilbur MA, Burkhead KD, Schisler DA, Bothast RJ (1997) Reduction of phenazine-1-carboxylic acid accumulation in growth cultures of the biocontrol agent Pseudomonas fluorescens 2-79 eliminates phytotoxic effects of wheat seed inocula without sacrifice to take-all suppressiveness. In A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo & S. Akino (eds.), Plant growth-promoting rhizobacteria present status and future prospects. The 4th PGPR International Workshop Organizing Committee, Faculty of Agriculture, Hokkaido University, Lab of Plant Pathology, Sapporo, Japan, p. 464–467

    Google Scholar 

  • Slininger PJ, VanCauwenberge JE, Shea-Wilbur MA, Bothast RJ (1998) Impact of liquid culture physiology, environment, and metabolites on biocontrol agent qualities-Pseudomonas fluorescens 2-79 versus wheat take-all, p. 199–221. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 329–353

    Google Scholar 

  • Slininger P, Behle RW, Jackson MA, Schisler DA (2003) Discovery and development of biological agents to control crop pest. Neotrop Entomol 32:183–195

    Article  Google Scholar 

  • Sharma A, Johri BN (2003) Combat of iron-deprivation through aplant growth promoting fluorescent Pseudomonas strain GRP3A in mung bean (Vigna radiate L. Wilzeck). Microbial Res 158:77–81

    Article  CAS  Google Scholar 

  • Todar K (2004) Pseudomonas and its relatives. Todar’s online textbook of bacteriology. www.textbookofbacteriology.net

    Google Scholar 

  • Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen N (eds) Plant microbe interactions, vol 1. Chapman and Hall, New York, pp 187–235

    Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34:399–413

    Article  PubMed  CAS  Google Scholar 

  • Vidhyasekaran P, Muthamilan M (1999) Evaluation of powder formulation of Pseudomonas fluorescens Pf1 for control of rice sheath blight. Biocontrol Sci Technol 9:67–74

    Article  Google Scholar 

  • Villa P, Bell A, Frías A, Díaz de Villegas ME, Martínez J, Gutiérrez I, Torres P, Redondo D, Hernández Y, Stefanova M, Alfonso I, Budzikiewicz H (2004) Biosynthesis of metabolites from Pseudomonas aeruginosa strain PSS for the control of phytopathogenic fungus. Memorias Encuentro Latinoamericano y del Caribe de Biotecnología Agrícola. Taller 3 21–25 de Junio 2004, Boca Chica, Rep. Dominicana (in Spanish)

    Google Scholar 

  • Villa P, Díaz de Villegas ME (1996) Potentialities of a biological product from Pseudomonas sp. strain PSS for the control of fungus and weeds. Sobre los Deriv 30:6–12 (in Spanish)

    Google Scholar 

  • Villa P, Díaz de Villegas ME, Stefanova M, Michelena G, Rodríguez JA, Gutiérrez I, Frías A (2002) Procedimiento de obtención de metabolitos antifúngicos de Pseudomonas aeruginosa PSS por vía biotecnológica Patente cubana No 22 805

    Google Scholar 

  • Visca P, Colotti G, Serino L, Verzili D, Orsi N, Chiancone E (1992) Metal regulation of siderophore synthesis in pseudomonas aeruginosa and functional effects of siderophore-metal complexes. Appl Environ Microbiol 58:2886–2893

    PubMed  CAS  Google Scholar 

  • Visca P, Ciervo A, Sanfilippo V, Orsi N (1993) Iron-regulated salicylate synthesis by Pseudomonas spp. J Gen Microbiol 139:1995–2001

    PubMed  CAS  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    Article  PubMed  CAS  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Ann Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Wilson M (1997) Biocontrol of aerial plant diseases in agriculture and horticulture: current approaches and future prospects. J Ind Microbiol Biotechnol 19:188–191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Elena, M., de Villegas, D. (2007). Biotechnological Production of Siderophores. In: Varma, A., Chincholkar, S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71160-5_11

Download citation

Publish with us

Policies and ethics