Skip to main content

Fungal Siderophores: Structure, Functions and Regulation

  • Chapter
Microbial Siderophores

Part of the book series: Soil Biology ((SOILBIOL,volume 12))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adjimani JP, Owusu E (1997) Nonenzymatic NADH/FMN-dependent reduction of ferric siderophores. J Inorg Biochem 66:247–252

    Article  CAS  Google Scholar 

  • An Z, Mei B, Yuan WM, Leong SA (1997a) The distal GATA sequences of the sid1 promoter of Ustilago maydis mediate iron repression of siderophore production and interact directly with Urbs1, a GATA family transcription factor. EMBO J 16:1742–1750

    Article  PubMed  CAS  Google Scholar 

  • An Z, Zhao Q, McEvoy J, Yuan WM, Markley JL, Long SA (1997b) The second finger of Urbs1 is required for iron-mediated repression of sid1 in Ustilago maydis. Proc Natl Acad Sci USA 94:5882–5887

    Article  PubMed  CAS  Google Scholar 

  • Ardon O, Weizman H, Libman J, Shanzer A, Chen Y, Hadar Y (1997) Iron uptake in Ustilago maydis: studies with fluorescent ferrichrome analogues. Microbiology 143:3625–3631

    CAS  Google Scholar 

  • Ardon O, Nudelman R, Caris C, Libman J, Shanzer A, Chen Y, Hadar Y (1998) Iron uptake in Ustilago maydis: tracking the iron path. J Bacteriol 180:2021–2026

    PubMed  CAS  Google Scholar 

  • Barash I, Pupkin G, Netzer D, Kashman Y (1982) A novel enolic-ketoaldehyde phytotoxin produced by Stemphylium botryosum f. sp. lycopersici. Plant Physiol 69:23–27

    PubMed  CAS  Google Scholar 

  • Barash I, Dori S, Mor H, Manulis S (1993) Role of iron in fungal phytopathologies, In: Iron chelation in plants and soil microorganisms. Academic Press, New York, pp 251–267

    Google Scholar 

  • Bartholdy BA, Berreck M, Haselwandter K (2001) Hydroxamate siderophore synthesis by Phialocephala fortinii, a typical dark septate fungal root endophyte. BioMetals 14:33–42

    Article  PubMed  CAS  Google Scholar 

  • Bentley MD, Anderegg RJ, Szaniszlo PJ, Davenport RF (1986) Isolation and identification of the principal siderophore of the dermatophyte Microsporum gypseum. Biochemistry 25:1455–1457

    Article  PubMed  CAS  Google Scholar 

  • Bergeron RJ, Brittenham GM (eds) (1994) The development of iron chelators for clinical use. CRC Press, Boca Raton, FL

    Google Scholar 

  • Böhnke R, Matzanke BF (1995) The mobile ferrous iron pool in Escherichia coli is bound to a phosphorylated sugar derivative. BioMetals 8:223–230

    Article  PubMed  Google Scholar 

  • Boelaert JR, de Locht M, Van Cutsem J, Kerrels V, Cantinieaux B, Verdonck A, Van Landuty HW, Schneider YJ (1993) Mucormycosis during deferoxamine therapy is a siderophore-mediated infection. J. Clin. Investig 91:1979–1986

    PubMed  CAS  Google Scholar 

  • ref?access_num=7647518&link_type=MEDBurt WR (1982) Identification of coprogen B and its breakdown products from Histoplasma capsulatum. Infect Immun 35:990–996

    PubMed  CAS  Google Scholar 

  • Byers BR, Arceneaux JEL (1998) Microbial iron transport: iron acquisition by pathogenic microorganisms. Metal Ions Biol Syst 35:37–66

    CAS  Google Scholar 

  • Carrano CJ, Raymond KN (1978) Coordination chemistry of microbial iron transport compounds: rhodotorulic acid and iron uptake in Rhodotorula pilimanae. J Bacteriol 136:69–74

    PubMed  CAS  Google Scholar 

  • Carrano CJ, Böhnke R, Matzanke BF (1996) Fungal ferritins: the ferritin from mycelia of Absidia spinosa is a bacterioferritin. FEBS Lett 390:261–264http://cmr.asm.org/cgi/external_ref?access_num=8706873&link_type=MED

    Article  PubMed  CAS  Google Scholar 

  • Carrano CJ, Jordan M, Drechsel H, Schmid DG, Winkelmann G (2001) BioMetals 14:119–125

    Article  CAS  Google Scholar 

  • Castaneda E, Brummer E, Perlman AM, McEwen JG, Stevens DA (1988) A culture medium for Paracoccidioides brasiliensis with high plating efficiency, and the effect of siderophores. J Med Vet Mycol 26:351–358

    PubMed  CAS  Google Scholar 

  • Charlang G, Ng B, Horowitz NH, Horowitz RM (1981) Cellular and extracellular siderophores of Aspergillus nidulans and Penicillium chrysogenum. Mol Cell Biol 1:94–100

    PubMed  CAS  Google Scholar 

  • Chung TDY, Matzanke BF, Winkelmann G, Raymond KN (1986) Inhibitory effect of the partially resolved coordination isomers of chromic desferricoprogen on coprogen uptake in Neurospora crassa. J Bacteriol 165:283–287

    PubMed  CAS  Google Scholar 

  • Cox CD (1994) Deferration of laboratory media and assays for ferric and ferrous iron. Methods Enzymol 235:315–329

    PubMed  CAS  Google Scholar 

  • Crosa JH (1997) Signal transduction and transcriptional and posttranscriptional control of iron-regulated genes in bacteria. Microbiol Mol Biol Rev 61:319–336

    PubMed  CAS  Google Scholar 

  • Cutler JE, Han Y (1996) Fungal factors implicated in pathogenesis. In: Esser K, Lemke PA (eds) The Mycota, vol. VI. Human and animal relationships. Springer, Berlin Heidelberg New York, pp 3–29

    Google Scholar 

  • de Hoog GS, Marvin-Sikkema FD, Lahpoor GA, Gottschall JG, Prins RA, Guého E (1994) Ecology and physiology of the emerging opportunistic fungi Pseudallescheria boydii and Scedosporium prolificans. Mycoses 37:71–78

    Article  PubMed  Google Scholar 

  • Deiss K, Hantke K, Winkelmann G (1998) BioMetals 11:131–137

    Article  PubMed  CAS  Google Scholar 

  • Drechsel H, Winkelmann G (1997) In: Winkelmann G, Carrano CJ (eds) Transition metals in microbial systems. Harwood Academic Publishers, Amsterdam, pp 1–49

    Google Scholar 

  • Drechsel H, Jung G, Winkelmann G (1992) BioMetals 5:141–148

    Article  CAS  Google Scholar 

  • Ecker DJ, Loomis LD, Cass ME, Raymond KN (1988) J Am Chem Soc 110:2457–2464

    Article  CAS  Google Scholar 

  • Eisendle M, Oberegger H, Zadra I, Haas H (2003) The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N-5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol Microbiol 49:359–375

    Article  PubMed  CAS  Google Scholar 

  • Eisendle M, Oberegger H, Buttinger R, Illmer P, Haas H (2004) Biosynthesis and uptake of siderophores is controlled by the PacC-mediated ambient-pH regulatory system in Aspergillus nidulans. Eukaryot Cell 3:561–563

    Article  PubMed  CAS  Google Scholar 

  • Fekete FA (1993) Assays for microbial siderophores. In: Iron chelation in plants and soil microorganisms. Academic Press, New York, pp 399–417

    Google Scholar 

  • Fekete FA, Spence JT, Emery T (1983) A rapid and sensitive paper electrophoresis assay for detection of microbial siderophores elicited in solid-plating culture. Anal Biochem 131:516–519

    Article  PubMed  CAS  Google Scholar 

  • Fekete FA, Chandhoke V, Jellison J (1989) Iron-binding compounds produced by wood-decaying basidiomycetes. Appl Environ Microbiol 55:2720–2722

    PubMed  CAS  Google Scholar 

  • Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann J, Lehrer RI (1985) Phagocytic mechanisms in host response. In: Howard DH (ed) Fungi pathogenic for humans and animals. B. Pathogenicity and detection: II. Marcel Dekker, New York, pp 123–149

    Google Scholar 

  • Frederick CB, Szaniszlo PJ, Vickrey PE, Bentley MD, Shive W (1981) Production and isolation of siderophores from the soil fungus Epicoccum purpurescens. Biochemistry 20:2432–2436

    Article  PubMed  CAS  Google Scholar 

  • Frederick CB, Bentley MD, Shive W (1982) The structure of the fungal siderophore, isotriornicin. Biochem Biophys Res Commun 105:133–138

    Article  PubMed  CAS  Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) In: Buscot F, Varma A (eds) Microorganismsin soils: roles in genesis and functions. Springer, Berlin Heidelberg New York, pp 213–247

    Chapter  Google Scholar 

  • Griffiths E, Humphreys J (1980) Isolation of enterochelin from the peritoneal washings of guinea pigs lethally infected with Escherichia coli. Infect Immun 28:286–289

    PubMed  CAS  Google Scholar 

  • Guerinot ML (1994) Microbial iron transport. Annu Rev Microbiol 48:743–772

    Article  PubMed  CAS  Google Scholar 

  • Haas B, Kraut J, Marks J, Zanker SC, Castignetti D (1991) Siderophore presence in sputa of cystic fibrosis patients. Infect Immun 59:3997–4000

    PubMed  CAS  Google Scholar 

  • Haas H (2003) Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl Microbiol Biotechnol 62:316–330

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Zadra I, Stoffler G, Angermayr K (1999) The Aspergillus nidulans GATA factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake J Biol Chem 274:4613–4619

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Schoeser M, Lesuisse E, Ernst JF, Parson W, Abt B, Winkelmann G, Oberegger H (2003) Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. Biochem J 371:505–513

    Article  PubMed  CAS  Google Scholar 

  • Haselwandter K, Winkelmann G (2002) Ferricrocin — an ectomycorrhizal siderophore of Cenococcum geophilum. BioMetals 15:73–77

    Article  PubMed  CAS  Google Scholar 

  • Haydon AH, Davis WB, Arceneaux JEL, Byers BR (1973) Hydroxamate recognition during iron transport from hydroxamate-iron chelates. J Bacteriol 115:912–918

    PubMed  CAS  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (1999) Identification of a fungal triacetylfusarinine C siderophore transport gene (TAF1) in Saccharomyces cerevisiae as a member of the major facilitator superfamily. BioMetals 12:301–306

    Article  PubMed  CAS  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000) Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbiol Lett 186:221–227

    Article  PubMed  CAS  Google Scholar 

  • Heymann P, Ernst JF, Winkelmann G (2000) A gene of the major facilitator superfamily encodes a transporter for enterobactin (Enblp) in Saccharomyces cerevisiae. BioMetals 13:65–72

    Article  PubMed  CAS  Google Scholar 

  • Hill TW, Kaefer E (2001) Improved protocols for Aspergillus medium: trace elements and minimum medium salt stock solution. Fungal Genet Newsl 48:20–21

    Google Scholar 

  • Höfte M (1993) Classes of microbial siderophores. In: Barton LL (ed) Iron chelation in plants and soil microorganisms. Academic Press, New York, pp 3–26

    Google Scholar 

  • Holzberg M, Artis WM (1983) Hydroxamate siderophore production by opportunistic and systemic fungal pathogens. Infect Immun 40:1134–1139

    PubMed  CAS  Google Scholar 

  • Howard DH (1999) Acquisition, transport, and storage of iron by pathogenic fungi. Clin Microbiol Rev 12:394–404

    PubMed  CAS  Google Scholar 

  • Huschka H, Jalal MAF, Van der Helm D, Winkelmann G (1986) J Bacteriol 167:1020–1024

    PubMed  CAS  Google Scholar 

  • Ismail A, Bedell GW, Lupan DM (1985) Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun 130:885–891

    Article  PubMed  CAS  Google Scholar 

  • Jacobson ES, Petro MJ (1987) Extracellular iron chelation in Cryptococcus neoformans. J Med Vet Mycol 25:415–418

    PubMed  CAS  Google Scholar 

  • Jacobson ES, Goodner AP, Nyhus KJ (1998) Ferrous iron uptake in Cryptococcus neoformans. Infect Immun 66:4169–4175

    PubMed  CAS  Google Scholar 

  • Jalal MAF, van der Helm D (1991) Isolation and spectroscopic identification of fungal siderophores. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, Fl, pp 235–269

    Google Scholar 

  • Jellison J, Goodell B (1988) Immunological detection of decay in wood. Wood Sci Technol 22:293–297

    Article  CAS  Google Scholar 

  • Jellison J, Goodell B (1989) Inhibitory effects of undecayed wood and the detection of Postia placenta using the enzyme-linked immunosorbent assay. Wood Sci Technol 23:13–20

    Article  Google Scholar 

  • Jellison J, Chandhoke V, Goodell B, Fekete FA (1991) The isolation and immunolocalization of iron-binding compounds produced by Gloeophyllum trabeum. Appl Biotechnol Microbiol 35:805–809

    CAS  Google Scholar 

  • Kuhn S, Braun V, Koster W (1996) Ferric rhizoferrin uptake into Morganella morganii: characterization of genes involved in the uptake of a polyhydroxycarboxylate siderophore. J Bacteriol 178:496–504

    PubMed  CAS  Google Scholar 

  • Kwon-Chung KJ, Bennett JE (1992) Medical mycology. Lea & Febiger, Philadelphia

    Google Scholar 

  • Labbe-Bois R, Camadro JM (1994) Ferrochelatase in Saccharomyces cerevisiae. In: Winkelmann G, Winge DR (eds) Metal ions in fungi, vol. 11. Marcel Dekker, New York, pp 413–453

    Google Scholar 

  • Leong SA, Winkelmann G (1998) Molecular biology of iron transport in fungi. Metal Ions Biol Syst 35:147–186

    CAS  Google Scholar 

  • Lesuisse E, Labbe P (1994) Reductive iron assimilation in Saccharomyces cerevisiae. In: Winkelmann G, Winge DR (eds) Metal ions in fungi, vol. 11. Marcel Dekker, New York, pp 149–178

    Google Scholar 

  • Lesuisse E, Blaiseau PL, Dancis A, Camadro JM (2001) Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147:289–298

    PubMed  CAS  Google Scholar 

  • Lesuisse E, Knight SA, Camadro JM, Dancis A (2002) Siderophore uptake by Candida albicans: effect of serum treatment and comparison with Saccharomyces cerevisiae. Yeast 19:329–340

    Article  PubMed  CAS  Google Scholar 

  • Loper JE, Buyer JS (1991) Siderophores in microbial interactions on plant surfaces. Mol Plant-Microbe Interact 4:5–13

    CAS  Google Scholar 

  • Manulis S, Kashman Y, Netzer D, Barash I (1984) Phytotoxins from Stemphylium botryosum: structural determination of stemphyloxin II, production in culture and interaction with iron. Phytochemistry 23:2193–2198

    Article  CAS  Google Scholar 

  • Manulis S, Kashman Y, Barash I (1987) Identification of siderophores and siderophore-mediated uptake of iron in Stemphylium botryosum. Phytochemistry 26:1317–1320

    Article  CAS  Google Scholar 

  • Martinez JS, Zhang GP, Holt PD, Jung HT, Carrano CJ, Haygood MG, Butler A (2000) Science 87:1245–1247

    Article  Google Scholar 

  • Matzanke BF (1991) Structures, coordination chemistry and functions of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, Fla, pp 15–64

    Google Scholar 

  • Matzanke BF (1994a) Iron storage in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi, vol. 11. Marcel Dekker, New York, pp 179–214

    Google Scholar 

  • Matzanke BF (1994b) Iron transport: siderophores. In: King RB (ed) Encyclopedia of inorganic chemistry, vol. 4, Iro-Met. Wiley, New York, pp 1915–1933

    Google Scholar 

  • Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Ferricrocin functions as the main intracellular iron-storage compound in mycelia of Neurospora crassa. Biol Metals 1:18–25

    Article  CAS  Google Scholar 

  • Mei B, Budde AD, Leong SA (1993) sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron and role in phytopathogenicity. Proc Natl Acad Sci USA 90:903–907

    Article  PubMed  CAS  Google Scholar 

  • Mezence MIB, Boiron P (1995) Studies on siderophore production and effect of iron deprivation on the outer membrane proteins of Madurella mycetomatis. Curr Microbiol 31:220–223

    Article  PubMed  CAS  Google Scholar 

  • Minnick AA, Eizember LE, McKee JA, Dolence EK, Miller MJ (1991) Bioassay for siderophore utilization by Candida albicans. Anal Biochem 194:223–229

    Article  PubMed  CAS  Google Scholar 

  • Moore DG, Yancey RJ, Lankford CE, Earhart CF (1980) Bacteriostatic enterochelin-specific immunoglobulin from normal human serum. Infect Immun 27:418–423

    PubMed  CAS  Google Scholar 

  • Moors MA, Stull TA, Blank KJ, Buckley HR, Mosser DM (1992) A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175:1643–1651

    Article  PubMed  CAS  Google Scholar 

  • Mor H, Pasternak M, Barash I (1988) Uptake of iron by Geotrichum candidum, a non-siderophore producer. BioMetals 1:99–105

    CAS  Google Scholar 

  • Mor H, Kashman Y, Winkelmann G, Barash I (1992) Characterization of siderophores produced by different species of dermatophytic fungi Microsporum and Trichophyton. BioMetals 5:213–216

    Article  CAS  Google Scholar 

  • Morrissey JA, Williams PH, Cashmore AM (1996) Candida albicans has a cell-associated ferric reductase activity which is regulated in response to levels of iron and copper. Microbiology 142:485–492

    Article  PubMed  CAS  Google Scholar 

  • Müller G, Barclay SJ, Raymond KN (1985) The mechanism and specificity of iron transport in Rhodotorula pilimanae probed by synthetic analogs of rhodotorulic acid. J Biol Chem 260:13916–13920

    PubMed  Google Scholar 

  • Neilands JB (1994) Identification and isolation of mutants defective in iron acquisition. Methods Enzymol 235:352–357

    PubMed  CAS  Google Scholar 

  • Neilands JB, Nakamura K (1991) Detection, determination, isolation, characterization and regulation of microbial iron chelates. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, Fla, pp 1–14

    Google Scholar 

  • Newton SM, Allen JS, Cao Z, Qi Z, Jiang X, Sprencel C, Igo JD, Foster SB, Payne MA, Klebba PE (1997) Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA. Proc Natl Acad Sci USA 94:4560–4565

    Article  PubMed  CAS  Google Scholar 

  • Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089

    Article  PubMed  CAS  Google Scholar 

  • Oberegger H, Zadra I, Schoeser M, Abt B, Parson W, Haas H (2002) Identification of members of the Aspergillus nidulans SREA regulon: genes involved in siderophore biosynthesis and utilization. Biochem Soc Trans 30:781–783

    Article  PubMed  CAS  Google Scholar 

  • Oberegger H, Eisendle M, Schrettl M, Graessle S, Haas H (2003) 4−-Phosphopantetheinyl transferase-encoding npgA is essential for siderophore biosynthesis in Aspergillus nidulans. Curr Genet 44:211–215

    Article  PubMed  CAS  Google Scholar 

  • Ong SA, Neilands JB (1979) Siderophores in microbially processed cheese. J Agric Food Chem 27:990–995

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jacques P, Delfosse P, Thonart P (2002) BioMetals 15:1–13

    Article  PubMed  CAS  Google Scholar 

  • Payne SM (1993) Iron acquisition in microbial pathogenesis. Trends Microbiol 1:66–68

    Article  PubMed  CAS  Google Scholar 

  • Payne SM (1994) Detection, isolation, and characterization of siderophores. Methods Enzymol 235:329–344

    Article  PubMed  CAS  Google Scholar 

  • Payne SM (1994) Effects of iron deprivation in outer membrane protein expression. Methods Enzymol 235:344–352

    Google Scholar 

  • Payne SM (1994) Identification and isolation of mutants defective in iron acquisition. Methods Enzymol 235:352–356

    Google Scholar 

  • Reissbrodt R, Rabsch W, Chapeaurouge A, Jung G, Winkelmann G (1990) BioMetals 3:54–60

    CAS  Google Scholar 

  • Reissbrodt R, Kingsley R, Rabsch W, Beer W, Roberts M, Williams PH (1997) Iron regulated excretion of-keto acids by Salmonella typhimurium. J Bacteriol 179:4538–4544

    PubMed  CAS  Google Scholar 

  • Riquelme M (1996) Fungal siderophores in plant-microbe interactions. Microbiologia 12:537–546

    PubMed  CAS  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence. JEM 200:1213–1219

    Article  CAS  Google Scholar 

  • Shenker M, Hadar Y, Chen Y (1999) Kinetics of iron complexing and metal exchange in solutions by rhizoferrin, a fungal siderophore. Soil Sci Soc Am J 63:1681–1687

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, California, London, pp 605

    Google Scholar 

  • Srivastava D, Kapoor R, Srivastava SK, Mukerji KG (1996) Vesicular arbuscular mycorrhiza: an overview. In: Mukerji KG (ed) Concepts in mycorrhizal research. Kluwer Academic Publishers, The Netherlands, pp 1–39

    Google Scholar 

  • Stintzi A, Barnes C, Xu J, Raymond KN (2000) Proc Natl Acad Sci USA 97:10691–10696

    Article  PubMed  CAS  Google Scholar 

  • Sweet SP, Douglas LJ (1991) Effect of iron concentration on siderophore synthesis and pigment production by Candida albicans. FEMS Microbiol Lett 80:87–92

    Article  CAS  Google Scholar 

  • Telford JR, Raymond KN (1996) Siderophores. In: Latwood J, Davis JED, MacNicol DD, Vogtle F (eds) Comprehensive supramolecular chemistry, vol. 1. Elsevier Science, Oxford, United Kingdom, pp 245–266

    Google Scholar 

  • Tilbrook GS, Hider RC (1998) Iron chelators for clinical use. Metal Ions Biol Syst 35:691–730

    CAS  Google Scholar 

  • Van der Helm D, Winkelmann G (1994) Hydroxamates and polycarboxylates as iron transport agents (siderophores) in fungi. In: Winkelmann G, Winge DR (eds) Metal ions in fungi, vol 11. Marcel Dekker, New York, pp 39–98

    Google Scholar 

  • Voisard C, Wang J, McEvoy JL, Xu P, Leong SA (1993) urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol Cell Biol 13:7091–7100

    PubMed  CAS  Google Scholar 

  • Watanabe NA, Nagasu T, Katsu K, Kitoh K (1987) Antimicrob Agents Chemother 31:497–504

    PubMed  CAS  Google Scholar 

  • Wei H, Vienken K, Weber R, Bunting S, Requena N, Fischer R (2004) A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet Biol 41:148–156

    Article  PubMed  CAS  Google Scholar 

  • Wilson ME, Vorhies RW, Anderson KA, Britigen BE (1994) Acquisition of iron from transferrin and lactoferrin by the protozoan Leishmania chagasi. Infect Immun 62:3262–3269

    PubMed  CAS  Google Scholar 

  • Winkelmann G (1979) Surface iron polymers and hydroxy acids. A model of iron supply in sideramine-free fungi. Arch Microbiol 121:43–51

    Article  CAS  Google Scholar 

  • Winkelmann G (1991) Specificity of iron transport in bacteria and fungi. In: Winkelmann G (ed) Handbook of microbial iron chelates. CRC Press, Boca Raton, Fla, pp 65–105

    Google Scholar 

  • Winkelmann G (1993) Kinetics, energetics, and mechanisms of siderophore iron transport in fungi. In: Barton LL (ed) Iron chelation in plants and soil microorganisms. Academic Press, New York, pp 219–239

    Google Scholar 

  • Winkelmann G (2001) Microbial siderophore-mediated transport. Biochem Soc Trans 30:691–696

    Article  Google Scholar 

  • Winkelmann G, Zahner H (1973) Stoffwechselprodukte von Mikroorganismen. 115, Mitteilung. Eisenaufnahme bei Neurospora crassa. I. Zur Spezifitat des Eisentransportes. Arch Mikrobiol 88:49–60

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann G, Schmid DG, Nicholson G, Jung G, Colquhoun DJ (2002) BioMetals 15:153–160

    Article  PubMed  CAS  Google Scholar 

  • Worsham PL, Goldman WE (1988) Quantitative plating of Histoplasma capsulatum without addition of conditioned medium or siderophores. J Med Vet Mycol 6:137–143

    Google Scholar 

  • Yehuda Z, Shenker M, Romheld V, Marschner H, Hadar Y, Chen Y (1996) The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants. Plant Pysiology 112:1273–1280

    CAS  Google Scholar 

  • Yun CW, Tiedeman JS, Moore RE, Philpott CC (2000) Siderophore-iron uptake in Sacharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters J Biol Chem 275:16354–16359

    Article  PubMed  CAS  Google Scholar 

  • Yun CW, Bauler M, Moore RE, Klebba PE, Philpott CC (2001) The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276:10218–10223

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, A., Prasad, R., Srivastava, A., Giang, P.H., Bhatnagar, K., Varma, A. (2007). Fungal Siderophores: Structure, Functions and Regulation. In: Varma, A., Chincholkar, S.B. (eds) Microbial Siderophores. Soil Biology, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71160-5_1

Download citation

Publish with us

Policies and ethics