Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1278 Accesses

Abstract

An N-dimensional space-filling curve (SFC) is a continuous, surjective1 (onto) function from the unit interval [0, 1] to the N-dimensional unit hypercube [0, 1]N. In particular, a 2-dimensional space-filling curve is a continuous curve that passes through every point of the unit square [0,1]2.

A function f from a domain X to a codomain Y is said to be surjective if its values span its whole codomain; that is, for every y in Y, there is at least one x in X such that f(x) = y.

A function f from a domain X to a codomain Y is said to be bijective if for every y in Y there is exactly one x in X such that f(x) = y.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asano, T., Ranjan, D., Roos, T., Welzl, E., and Widmayer, P. 1997. Space-filling curves and their use in the design of geometric data structures. Theoretical Computer Science, 181(1):3–15.

    Article  MATH  MathSciNet  Google Scholar 

  2. Bohez, E. L. J. 2002. Five-axis milling machine tool kinematic chain design and analysis. International Journal of Machine Tools and Manufacture, 42(4):505–520.

    Article  Google Scholar 

  3. Bohez, E. L. J., Makhanov, S. S., and Sonthipermpoon, K. 2000. Adaptive nonlinear tool path optimization for 5-axis machining. International Journal of Production Research, 38(17):4329–4343.

    Article  MATH  Google Scholar 

  4. Chiou, C.-J. and Lee, Y.-S. 2002. A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Computer-Aided Design, 34(5):357–371.

    Article  Google Scholar 

  5. Cole, A. J. 1987. Compaction techniques for raster scan graphics using space-filling curves. The Computer Journal, 30(1):87–92.

    Article  Google Scholar 

  6. Cox, J. J., Takezaki, Y., Ferguson, H. R. P., Kohkonen, K. E., and Mulkay, E. L. 1994. Space-filling curves in tool-path applications. Computer-Aided Design, 26(3):215–224.

    Article  MATH  Google Scholar 

  7. Dafner, R., Cohen-Or, D., and Matias, Y. 2000. Context-based space filling curves. Computer Graphics Forum, 19(3):209–218.

    Article  Google Scholar 

  8. Griffiths, J. G. 1994. Toolpath based on Hilbert’s curve. Computer-Aided Design, 26(11):839–844.

    Article  Google Scholar 

  9. Hopcroft, J. E. and Ullman, J. D. 1979. Introduction To Automata Theory, Languages, And Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

    MATH  Google Scholar 

  10. Kim, K. and Jeong, J. 1996. Finding tool approach directions for sculptured surface manufacture. IIE Transactions on Design and Manufacturing, 28(10):829–836.

    Google Scholar 

  11. Koren, Y. and Lin, R.-S. 1995. Five-axis surface interpolators. Annals of CIRP, 44(1):379–382.

    Article  Google Scholar 

  12. Lam, W. M., Shapiro, J. M., and Sarnoff, D. 1994. A class of fast algorithms for the Peano-Hilbert space-filling curve. In ICIP (1), pages 638–641.

    Google Scholar 

  13. Lauwers, B., Dejonghe, P., and Kruth, J. P. 2003. Optimal and collision free tool posture in five-axis machining through the tight integration of tool path generation and machine simulation. Computer-Aided Design, 35(5):421–432.

    Article  Google Scholar 

  14. Lawder, J. K. and King, P. J. H. 2001. Querying multi-dimensional data indexed using the hilbert space-filling curve. ACM SIGMOD Record, 30(1):19–24.

    Article  Google Scholar 

  15. Lee, Y.-S. and Ji, H. 1997. Surface interrogation and machining strip evaluation for 5-axis CNC die and mold machining. International Journal of Production Research, 35(1):225–252.

    Article  MATH  Google Scholar 

  16. Lin, R.-S. and Koren, Y. 1994. Real time interpolator for machining ruled surfaces. In ASME Annual Meeting Proceedings, pages 951–960.

    Google Scholar 

  17. Makhanov, S. S., Batanov, D., Bohez, E., Sonthipaumpoon, K., Anotaipaiboon, W., and Tabucanon, M. 2002. On the tool-path optimization of a milling robot. Computers & Industrial Engineering, 43(3):455–472.

    Article  Google Scholar 

  18. Makhanov, S. S. and Ivanenko, S. A. 2003. Grid generation as applied to optimize cutting operations of the five-axis milling machine. Applied Numerical Mathematics, 46(3–4):331–351.

    Article  MATH  Google Scholar 

  19. Munlin, M.-A., Makhanov, S. S., and Bohez, E. L. J. 2004. Optimization of rotations of a five-axis milling machine near stationary points. Computer-Aided Design, 36(12):1117–1128.

    Article  Google Scholar 

  20. Pascucci, V. and Frank, R. J. 2001. Global static indexing for real-time exploration of very large regular grids. In Supercomputing’ 01: Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM), pages 2–2.

    Google Scholar 

  21. Rao, A. and Sarma, R. 2000. On local gouging in five-axis sculptured surface machining using flat-end tools. Computer-Aided Design, 32(7):409–420.

    Article  Google Scholar 

  22. Roberts, F. S. 1984. Applied combinatorics. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

    MATH  Google Scholar 

  23. Sagan, H. 1994. Space-Filling Curves. Springer-Verlag, New York.

    MATH  Google Scholar 

  24. Schamberger, S. and Wierum, J.-M. 2005. Partitioning finite element meshes using space-filling curves. Future Generation Computer Systems, 21(5):759–766.

    Article  Google Scholar 

  25. Song, Z. and Roussopoulos, N. 2000. Using Hilbert curve in image storing and retrieving. In MULTIMEDIA’ 00: Proceedings of the 2000 ACM workshops on Multimedia, pages 167–170.

    Google Scholar 

  26. Velho, L. and Gomes, J. 1991. Digital halftoning with space filling curves. In SIGGRAPH’ 91: Proceedings of the 18th annual conference on Computer graphics and interactive techniques, pages 81–90.

    Google Scholar 

  27. Yang, K.-M., Wu, L., and Mills, M. 1988. Fractal based image coding scheme using Peano scanning. In Proceedings of 1988 IEEE International Symposium on Circuits and Systems, pages 2301–2304.

    Google Scholar 

  28. Zhang, Y. and Webber, R. E. 1993. Space diffusion: an improved parallel halftoning technique using space-filling curves. In SIGGRAPH’ 93: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pages 305–312.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Space-Filling Curve Tool Paths. In: Advanced Numerical Methods to Optimize Cutting Operations of Five-Axis Milling Machines. Springer Series in Advanced Manufacturing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71121-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71121-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71120-9

  • Online ISBN: 978-3-540-71121-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics