Skip to main content

Part of the book series: Springer Series in Advanced Manufacturing ((SSAM))

  • 1271 Accesses

Abstract

There are a number of issues involved in tool path planning for five-axis NC machining. Four fundamental issues are discussed in this chapter, namely, surface representation, machining strip width estimation, optimal tool orientation and forward step (kinematics) error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bobrow, J. E. 1985. NC machine tool path generation from CSG part representations. Computer Aided Design, 17(2):69–76.

    Article  Google Scholar 

  2. Chiou, C.-J. and Lee, Y.-S. 2002. A machining potential field approach to tool path generation for multi-axis sculptured surface machining. Computer-Aided Design, 34(5):357–371.

    Article  Google Scholar 

  3. Dragomatz, D. and Mann, S. 1997. A classified bibliography of literature on NC milling path generation. Computer-Aided Design, 29(3):239–247.

    Article  Google Scholar 

  4. Elber, G. and Cohen, E. 1994. Toolpath generation for freeform surface models. Computer-Aided Design, 26(6):490–496.

    Article  MATH  Google Scholar 

  5. Griffiths, J. G. 1994. Toolpath based on Hilbert’s curve. Computer-Aided Design, 26(11):839–844.

    Article  Google Scholar 

  6. Hatna, A. and Grieve, B. 2000. Cartesian machining versus parametric machining: a comparative study. International Journal of Production Research, 38(13):3043–3065.

    Article  Google Scholar 

  7. Jensen, C. G., Red, W. E., and Pi, J. 2002. Tool selection for five-axis curvature matched machining. Computer-Aided Design, 34(3):251–266.

    Article  Google Scholar 

  8. Jeong, J. and Kim, K. 1999a. Generating tool paths for free-form pocket machining using z-buffer-based Voronoi diagrams. International Journal of Advanced Manufacturing Technology, 15(3):182–187.

    Article  Google Scholar 

  9. Jeong, J. and Kim, K. 1999b. Generation of tool paths for machining free-form pockets with islands using distance maps. International Journal of Advanced Manufacturing Technology, 15(5):311–316.

    Article  Google Scholar 

  10. Lee, Y.-S. 1998. Non-isoparametric tool path planning by machining strip evaluation for 5-axis sculptured surface machining. Computer-Aided Design, 30(7):559–570.

    Article  MATH  Google Scholar 

  11. Lee, Y.-S. and Ji, H. 1997. Surface interrogation and machining strip evaluation for 5-axis CNC die and mold machining. International Journal of Production Research, 35(1):225–252.

    Article  MATH  Google Scholar 

  12. Lin, R.-S. and Koren, Y. 1996. Efficient tool-path planning for machining free-form surfaces. ASME Journal of Engineering for Industry, 118(1):20–28.

    Google Scholar 

  13. Lo, C. C. 1999. Efficient cutter-path planning for five-axis surface machining with a flat-end cutter. Computer-Aided Design, 31(9):557–566.

    Article  MATH  Google Scholar 

  14. Makhanov, S. S., Batanov, D., Bohez, E., Sonthipaumpoon, K., Anotaipaiboon, W., and Tabucanon, M. 2002. On the tool-path optimization of a milling robot. Computers & Industrial Engineering, 43(3):455–472.

    Article  Google Scholar 

  15. Munlin, M.-A., Makhanov, S. S., and Bohez, E. L. J. 2004. Optimization of rotations of a five-axis milling machine near stationary points. Computer-Aided Design, 36(12):1117–1128.

    Article  Google Scholar 

  16. Park, S. C. and Choi, B. K. 2000. Tool-path planning for direction-parallel area milling. Computer-Aided Design, 32(1):17–25.

    Article  MathSciNet  Google Scholar 

  17. Sarma, R. 2000. An assessment of geometric methods in trajectory synthesis for shape-creating manufacturing operations. Journal of Manufacturing Systems, 19(1):59–72.

    Article  MathSciNet  Google Scholar 

  18. Suh, S. H. and Shin, Y. S. 1996. Neural network modeling for tool path planning of rough cut in complex pocket milling. Journal of Manufacturing Systems, 15(5):295–304.

    Google Scholar 

  19. Wang, Y. and Tang, X. 1999. Five-axis NC machining of sculptured surfaces. International Journal of Advanced Manufacturing Technology, 15(1):7–14.

    Article  MATH  Google Scholar 

  20. Warkentin, A., Ismail, F., and Bedi, S. 1998. Intersection approach to multi-point machining of sculptured surfaces. Computer Aided Geometric Design, 15(6):567–584.

    Article  MATH  MathSciNet  Google Scholar 

  21. Warkentin, A., Ismail, F., and Bedi, S. 2000. Multi-point tool positioning strategy for 5-axis machining of sculptured surfaces. Computer Aided Geometric Design, 17(1):83–100.

    Article  MathSciNet  Google Scholar 

  22. Yoon, J.-H. 1997. Tool tip gouging avoidance and optimal tool positioning for 5-axis sculptured surface machining. International Journal of Production Research, 41(10):2125–2142.

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2007). Fundamental Issues in Tool Path Planning. In: Advanced Numerical Methods to Optimize Cutting Operations of Five-Axis Milling Machines. Springer Series in Advanced Manufacturing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71121-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71121-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71120-9

  • Online ISBN: 978-3-540-71121-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics