Skip to main content

Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners

  • Chapter
Approaches to Fundamental Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 721))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Loll, ‘Discrete approaches to quantum gravity in four dimensions’, Living Rev. Rel. 1 (1998) 13, http://xxx.lanl.gov/abs/gr-qc/9805049gr-qc/9805049.

    Google Scholar 

  2. G. W. Gibbons and S. W. Hawking, ‘Action integrals and partition functions in quantum gravity’, Phys. Rev. D15 (1977) 2752–2756.

    ADS  MathSciNet  Google Scholar 

  3. S. W. Hawking, ‘The path-integral approach to quantum gravity’, in ‘An Einstein Centenary Survey’, S. Hawking and W. Israel, eds., pp. 746–789. Cambridge University Press, 1979.

    Google Scholar 

  4. S. Weinberg, ‘Ultraviolet divergences in quantum gravity’, in ‘An Einstein Centenary Survey’, S. Hawking and W. Israel, eds., pp. 790–832. Cambridge University Press, 1979.

    Google Scholar 

  5. S. Weinberg, ‘What is quantum field theory, and what did we think it was?”, http://xxx.lanl.gov/abs/hep-th/9702027hep-th/9702027.

    Google Scholar 

  6. O. Lauscher and M. Reuter, “Is quantum Einstein gravity nonperturbatively renormalizable?’, Class Quant Grav. 19 (2002) 483–492, http://xxx.lanl.gov/abs/hep-th/0110021hep-th/0110021.

    Google Scholar 

  7. C. Kiefer, ‘Quantum Gravity’, Clarendon Press, 2004.

    Google Scholar 

  8. H. Nicolai, K. Peeters, and M. Zamaklar, ‘Loop quantum gravity: an outside view’, Class Quant Grav. 22 (2005) R193–R247, http://xxx.lanl.gov/abs/hep-th/0501114hep-th/0501114.

    Google Scholar 

  9. R. Gambini and J. Pullin, ‘Loops, knots, gauge theories and quantum gravity’, Cambridge University Press, 1996.

    Google Scholar 

  10. T. Thiemann, ‘Introduction to modern canonical quantum general relativity’, http://xxx.lanl.gov/abs/gr-qc/0110034gr-qc/0110034.

    Google Scholar 

  11. A. Ashtekar and J. Lewandowski, “Background independent quantum gravity: A status report”, Class Quant Grav. 21 (2004) R53, http://xxx.lanl.gov/abs/gr-qc/0404018gr-qc/0404018.

    Google Scholar 

  12. A. Perez, ‘Introduction to loop quantum gravity and spin foams’, http://xxx.lanl.gov/abs/gr-qc/0409061gr-qc/0409061.

    Google Scholar 

  13. J. C. Baez, “An introduction to spin foam models of BF theory and quantum gravity”, Lect Notes Phys. 543 (2000) 25–94, http://xxx.lanl.gov/abs/gr-qc/9905087gr-qc/9905087.

    Google Scholar 

  14. A. Perez, “Spin foam models for quantum gravity”, Class Quant Grav. 20 (2003) R43, http://xxx.lanl.gov/abs/gr-qc/0301113gr-qc/0301113.

    Google Scholar 

  15. C. Rovelli, ‘Quantum gravity’, Cambridge University Press, 2004.

    Google Scholar 

  16. A. Perez, “On the regularization ambiguities in loop quantum gravity”, http://xxx.lanl.gov/abs/gr-qc/0509118gr-qc/0509118.

    Google Scholar 

  17. A. Perez, “The spin-foam-representation of loop quantum gravity”, http://xxx.lanl.gov/abs/gr-qc/0601095gr-qc/0601095.

    Google Scholar 

  18. “Loops ’05”, http://loops05.aei.mpg.de/.

    Google Scholar 

  19. A. Ashtekar, S. Fairhurst, and J. L. Willis, “Quantum gravity, shadow states, and quantum mechanics”, Class Quant Grav. 20 (2003) 1031–1062, http://xxx.lanl.gov/abs/gr-qc/0207106gr-qc/0207106.

    Google Scholar 

  20. T. Thiemann, “Gauge field theory coherent states (GCS). I: General properties”, Class Quant Grav. 18 (2001) 2025–2064, http://xxx.lanl.gov/abs/hep-th/0005233hep-th /0005233.

    Google Scholar 

  21. T. Thiemann and O. Winkler, “Gauge field theory coherent states (GCS). II: Peakedness properties”, Class Quant Grav. 18 (2001) 2561–2636, http://xxx.lanl.gov/abs/hep-th/0005237hep-th/0005237.

    Google Scholar 

  22. T. Thiemann and O. Winkler, “Gauge field theory coherent states (GCS) III: Ehrenfest theorems”, Class Quant Grav. 18 (2001) 4629–4682, http://xxx.lanl.gov/abs/hep-th/0005234hep-th/0005234.

    Google Scholar 

  23. T. Thiemann and O. Winkler, “Gauge field theory coherent states (GCS). IV: Infinite tensor product and thermodynamical limit”, Class Quant Grav. 18 (2001) 4997–5054, http://xxx.lanl.gov/abs/hep-th/0005235hep-th/0005235.

    Google Scholar 

  24. T. Thiemann, “Complexifier coherent states for quantum general relativity”, http://xxx.lanl.gov/abs/gr-qc/0206037gr-qc/0206037.

    Google Scholar 

  25. H. Sahlmann, T. Thiemann, and O. Winkler, “Coherent states for canonical quantum general relativity and the infinite tensor product extension”, Nucl Phys. B606 (2001) 401–440, http://xxx. lanl.gov/abs/gr-qc/0102038gr-qc/0102038.

    Google Scholar 

  26. [ J. Brunnemann and T. Thiemann, “On (cosmological) singularity avoidance in loop quantum gravity”, http://xxx.lanl.gov/abs/gr-qc/ 0505032gr-qc/0505032.

    Google Scholar 

  27. K. A. Meissner, “Eigenvalues of the volume operator in loop quantum gravity”, http://xxx.lanl.gov/abs/gr-qc/0509049gr-qc/0509049.

    Google Scholar 

  28. W. Fairbairn and C. Rovelli, “Separable Hilbert space in loop quantum gravity”, J Math Phys. 45 (2004) 2802–2814, http://xxx.lanl.gov/abs/gr-qc/0403047gr-qc/0403047.

    Google Scholar 

  29. R. Borissov, R. De Pietri, and C. Rovelli, “Matrix elements of Thiemann’s Hamiltonian constraint in loop quantum gravity”, Class Quant Grav. 14 (1997) 2793–2823, http://xxx.lanl.gov/abs/gr-qc/9703090gr-qc/9703090.

    Google Scholar 

  30. T. Thiemann, “Quantum spin dynamics (QSD)”, Class Quant Grav. 15 (1998) 839–873, http://xxx.lanl.gov/abs/gr-qc/9606089gr-qc/9606089.

    Google Scholar 

  31. R. De Pietri and C. Rovelli, “Geometry eigenvalues and scalar product from recoupling theory in loop quantum gravity”, Phys Rev. D54 (1996) 2664–2690, http://xxx.lanl.gov/abs/gr-qc/9602023gr-qc/9602023.

    Google Scholar 

  32. J. Brunnemann and T. Thiemann, “Simplification of the spectral analysis of the volume operator in loop quantum gravity”, http://xxx.lanl.gov/abs/gr-qc/0405060gr-qc/0405060.

    Google Scholar 

  33. J. Lewandowski and D. Marolf, “Loop constraints: A habitat and their algebra”, Int J Mod Phys. D7 (1998) 299–330, http://xxx.lanl.gov/abs/gr-qc/9710016gr-qc/9710016.

    Google Scholar 

  34. L. Smolin, “The classical limit and the form of the Hamiltonian constraint in non-perturbative quantum general relativity”, http://xxx.lanl.gov/abs/gr-qc/9609034gr-qc/9609034.

    Google Scholar 

  35. D. E. Neville, “Long range correlations in quantum gravity”, Phys Rev. D59 (1999) 044032, http://xxx.lanl.gov/abs/gr-qc/9803066gr-qc/9803066.

    Google Scholar 

  36. R. Loll, “On the diffeomorphism-commutators of lattice quantum gravity”, Class Quant Grav. 15 (1998) 799–809, http://xxx.lanl.gov/abs/gr-qc/9708025gr-qc/9708025.

    Google Scholar 

  37. T. Thiemann, “Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity”, Phys Lett. B380 (1996) 257–264, http://xxx.lanl.gov/abs/gr-qc/9606088gr-qc/9606088.

    Google Scholar 

  38. R. Gambini, J. Lewandowski, D. Marolf, and J. Pullin, “On the consistency of the constraint algebra in spin network quantum gravity”, Int J Mod Phys. D7 (1998) 97–109, http://xxx.lanl.gov/abs/gr-qc/9710018gr-qc/9710018.

    Google Scholar 

  39. M. Henneaux and C. Teitelboim, “Quantization of gauge systems”, Princeton University Press, 1992.

    Google Scholar 

  40. M. P. Reisenberger, “World sheet formulations of gauge theories and gravity”, http://xxx.lanl.gov/abs/gr-qc/9412035gr-qc/9412035.

    Google Scholar 

  41. M. P. Reisenberger and C. Rovelli, ‘{‘Sum over surfaces’ form of loop quantum gravity”, Phys Rev. D56 (1997) 3490–3508, http://xxx.lanl.gov/abs/gr-qc/9612035gr-qc/9612035.

    Google Scholar 

  42. J. C. Baez, “Spin foam models”, Class Quant Grav. 15 (1998) 1827–1858, http://xxx.lanl.gov/abs/gr-qc/9709052gr-qc/9709052.

    Google Scholar 

  43. R. De Pietri, “Canonical “loop” quantum gravity and spin foam models”, http://xxx.lanl.gov/abs/gr-qc/9903076gr-qc/9903076.

    Google Scholar 

  44. C. Rovelli, “The projector on physical states in loop quantum gravity”, Phys Rev. D59 (1999) 104015, http://xxx.lanl.gov/abs/gr-qc/9806121gr-qc/9806121.

    Google Scholar 

  45. S. Deser, R. Jackiw, and G. ’t Hooft, “Three-dimensional Einstein gravity: dynamics of flat space”, Ann Phys. 152 (1984) 220.

    Article  ADS  Google Scholar 

  46. E. Witten, “(2+1)-Dimensional gravity as an exactly soluble system”, Nucl Phys. B311 (1988) 46.

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Ashtekar, V. Husain, C. Rovelli, J. Samuel, and L. Smolin, “(2+1)-Quantum gravity as a toy model for the (3+1) theory”, Class Quant Grav. 6 (1989) L185.

    Article  ADS  MathSciNet  Google Scholar 

  48. K. Noui and A. Perez, “Three dimensional loop quantum gravity: Physical scalar product and spin foam models”, Class Quant Grav. 22 (2005) 1739–1762, http://xxx.lanl.gov/abs/gr-qc/0402110gr-qc/0402110.

    Google Scholar 

  49. M. Karowski, W. Muller, and R. Schrader, “State sum invariants of compact three manifolds with boundary and 6j symbols”, J Phys. A25 (1992) 4847–4860.

    ADS  MathSciNet  Google Scholar 

  50. J. W. Barrett and L. Crane, “Relativistic spin networks and quantum gravity”, J Math Phys. 39 (1998) 3296–3302, http://xxx.lanl.gov/abs/gr-qc/9709028gr-qc/9709028.

    Google Scholar 

  51. L. Freidel and K. Krasnov, “Spin foam models and the classical action principle”, Adv Theor Math Phys. 2 (1999) 1183–1247, http://xxx.lanl.gov/abs/hep-th/9807092hep-th/9807092.

    Google Scholar 

  52. H. Ooguri, “Topological lattice models in four dimensions”, Mod Phys Lett. A7 (1992) 2799–2810, http://xxx.lanl.gov/abs/hep-th/ 9205090hep-th/9205090.

    Google Scholar 

  53. L. Crane and D. Yetter, “A categorical construction of 4-D topological quantum field theories”, in ‘Quantum Topology’, L. Kauffman and R. Baadhio, eds., pp. 120–130. World Scientific, Singapore, 1993. http://xxx.lanl.gov/abs/ hep-th/9301062hep-th/9301062.

    Google Scholar 

  54. L. Crane, L. H. Kauffman, and D. N. Yetter, “State sum invariants of four-manifolds I”, J Knot\ Theor\ Ramifications 6 (1997) 177–234, http://xxx.lanl.gov/abs/hep-th/9409167hep-th/9409167.

    Google Scholar 

  55. M. P. Reisenberger, “On relativistic spin network vertices”, J Math Phys. 40 (1999) 2046–2054, http://xxx.lanl.gov/abs/gr-qc/9809067gr-qc/9809067.

    Google Scholar 

  56. L. Freidel, “Group field theory: An overview”, Int J Theor Phys. 44 (2005) 1769–1783, http://xxx.lanl.gov/abs/hep-th/0505016hep-th/ 0505016.

    Google Scholar 

  57. J. C. Baez, J. D. Christensen, T. R. Halford, and D. C. Tsang, “Spin foam models of Riemannian quantum gravity”, Class Quant Grav. 19 (2002) 4627–4648, http://xxx.lanl.gov/abs/gr-qc/0202017gr-qc/0202017.

    Google Scholar 

  58. J. W. Barrett and L. Crane, “A Lorentzian signature model for quantum general relativity”, Class Quant Grav. 17 (2000) 3101–3118, http://xxx.lanl.gov/abs/gr-qc/9904025gr-qc/9904025.

    Google Scholar 

  59. A. Perez and C. Rovelli, “Spin foam model for Lorentzian general relativity”, Phys Rev. D63 (2001) 041501, http://xxx.lanl.gov/abs/gr-qc/0009021gr-qc/0009021.

    Google Scholar 

  60. R. M. Williams and P. A. Tuckey, “Regge calculus: A bibliography and brief review”, Class Quant Grav. 9 (1992) 1409–1422.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. D. V. Boulatov, V. A. Kazakov, I. K. Kostov, and A. A. Migdal, “Analytical and numerical study of the model of dynamically triangulated random surfaces”, Nucl Phys. B275 (1986) 641.

    Google Scholar 

  62. A. Billoire and F. David, “Scaling properties of randomly triangulated planar random surfaces: a numerical study”, Nucl Phys. B275 (1986) 617.

    Article  ADS  MathSciNet  Google Scholar 

  63. J. Ambjørn, B. Durhuus, J. Frohlich, and P. Orland, “The appearance of critical dimensions in regulated string theories”, Nucl Phys. B270 (1986) 457.

    Article  ADS  Google Scholar 

  64. J. {Ambjorn, J. Jurkiewicz, and R. Loll, “Dynamically triangulating Lorentzian quantum gravity”, Nucl Phys. B610 (2001) 347–382, http://xxx.lanl.gov/abs/hep-th/0105267hep-th/0105267.

    Google Scholar 

  65. J. Ambjorn, J. Jurkiewicz, and R. Loll, “Emergence of a 4D world from causal quantum gravity”, Phys Rev Lett. 93 (2004) 131301, http://xxx.lanl.gov/abs/hep-th/0404156hep-th/0404156.

    Google Scholar 

  66. W. Bock and J. C. Vink, “Failure of the Regge approach in two-dimensional quantum gravity”, Nucl Phys. B438 (1995) 320–346, http://xxx.lanl.gov/abs/hep-lat/9406018hep-lat/9406018.

    Google Scholar 

  67. C. Holm and W. Janke, “Measure dependence of 2D simplicial quantum gravity”, Nucl Phys Proc Suppl. 42 (1995) 722–724, http://xxx.lanl.gov/abs/ hep-lat/9501005hep-lat/9501005.

    Google Scholar 

  68. J. Ambjorn, J. L. Nielsen, J. Rolf, and G. K. Savvidy, “Spikes in quantum Regge calculus”, Class Quant Grav. 14 (1997) 3225–3241, http://xxx.lanl.gov/abs/gr-qc/9704079gr-qc/9704079.

    Google Scholar 

  69. J. Rolf, “Two-dimensional quantum gravity”, PhD thesis, University of Copenhagen, 1998. http://xxx.lanl.gov/abs/hep-th/9810027hep-th/9810027.

    Google Scholar 

  70. H. W. Hamber and R. M. Williams, “On the measure in simplicial gravity”, Phys Rev. D59 (1999) 064014, http://xxx.lanl.gov/abs/ hep-th/9708019hep-th/9708019.

    Google Scholar 

  71. C. Rovelli, “Graviton propagator from background-independent quantum gravity”, http://xxx.lanl.gov/abs/gr-qc/0508124gr-qc/0508124.

    Google Scholar 

  72. S. Speziale, “Towards the graviton from spinfoams: The 3d toy model”, http://xxx.lanl.gov/abs/gr-qc/0512102gr-qc/0512102.

    Google Scholar 

  73. H. Ooguri, “Partition functions and topology changing amplitudes in the 3D lattice gravity of Ponzano and Regge”, Nucl Phys. B382 (1992) 276–304, http://xxx.lanl.gov/abs/hep-th/9112072hep-th/9112072.

    Google Scholar 

  74. G. Ponzano and T. Regge, “Semiclassical limit of Racah coefficients”, in “Spectroscopic and group theoretical methods in physics”. North-Holland, 1968.

    Google Scholar 

  75. J. Roberts, “Classical $6j$-symbols and the tetrahedron”, Geom Topol. 3 (1999) 21–66, http://xxx.lanl.gov/abs/math-ph/9812013math-ph/9812013.

    Google Scholar 

  76. J. W. Barrett and R. M. Williams, “The asymptotics of an amplitude for the 4-simplex”, Adv Theor Math Phys. 3 (1999) 209–215, http://xxx.lanl.gov/abs/gr-qc/9809032gr-qc/9809032.

    Google Scholar 

  77. L. Freidel and K. Krasnov, “Simple spin networks as Feynman graphs”, J Math Phys. 41 (2000) 1681–1690, http://xxx.lanl.gov/abs/hep-th/9903192hep-th/9903192.

    Google Scholar 

  78. V. G. Knizhnik, A. M. Polyakov, and A. B. Zamolodchikov, “Fractal structure of 2d-quantum gravity”, Mod Phys Lett. A3 (1988) 819.

    ADS  MathSciNet  Google Scholar 

  79. F. David, “Conformal field theories coupled to 2-d gravity in the conformal gauge”, Mod Phys Lett. A3 (1988) 1651.

    ADS  Google Scholar 

  80. J. Distler and H. Kawai, “Conformal field theory and 2-d quantum gravity or who’s afraid of Joseph Liouville?”, Nucl Phys. B321 (1989) 509.

    Article  ADS  MathSciNet  Google Scholar 

  81. J. W. Barrett, “State sum models for quantum gravity”, http://xxx.lanl.gov/abs/gr-qc/0010050gr-qc/0010050.

    Google Scholar 

  82. H. Pfeiffer, “Diffeomorphisms from finite triangulations and absence of ‘local’ degrees of freedom”, Phys Lett. B591 (2004) 197–201, http://xxx.lanl.gov/abs/gr-qc/0312060gr-qc/0312060.

    Google Scholar 

  83. L. Freidel and D. Louapre, “Diffeomorphisms and spin foam models”, Nucl Phys. B662 (2003) 279–298, http://xxx.lanl.gov/abs/gr-qc/0212001gr-qc/0212001.

    Google Scholar 

  84. L. Crane, A. Perez, and C. Rovelli, “A finiteness proof for the Lorentzian state sum spinfoam model for quantum general relativity”, http://xxx.lanl.gov/abs/gr-qc/0104057gr-qc/0104057.

    Google Scholar 

  85. M. H. Goroff and A. Sagnotti, “Quantum gravity at two loops”, Phys Lett. B160 (1985) 81.

    ADS  Google Scholar 

  86. M. H. Goroff and A. Sagnotti, “The ultraviolet behavior of Einstein gravity”, Nucl Phys. B266 (1986) 709.

    Article  ADS  Google Scholar 

  87. A. E. M. van de Ven, “Two loop quantum gravity”, Nucl Phys. B378 (1992) 309–366.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicolai, H., Peeters, K. (2007). Loop and Spin Foam Quantum Gravity: A Brief Guide for Beginners. In: Stamatescu, IO., Seiler, E. (eds) Approaches to Fundamental Physics. Lecture Notes in Physics, vol 721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71117-9_9

Download citation

Publish with us

Policies and ethics