Skip to main content

Tests of fundamental symmetries and interactions — using nuclei and lasers

  • Conference paper
  • First Online:
LASER 2006
  • 365 Accesses

Abstract

State of the art laser technology and modern spectroscopic methods allow to address issues of fundamental symmetries and fundamental interactions in atoms with high precision experiments. In particular the discrete symmetries Parity (P), Charge Conjugation (C), Time Reversal (T) as well as their combinations CP and CPT are in the center of interest at present. Actual projects are concerned with Parity Violation in atoms, Time Reversal Violation in β-decays and searches for permanent Electric Dipole Moments (EDMs), and tests of CPT conservation in particle-antiparticle properties, in particular antiprotonic atoms.

This work is supported in part by the Dutch Stichting voor Fundamenteel Onderzoek der Materie (FOM) under programme number 48 (TRIμLP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akesson, T., et al.: Towards the European strategy for particle physics: the Briefing Book. hep-ph/0609216 (2006)

    Google Scholar 

  2. Jungmann, K.: Fundamental symmetries and interactions. Nucl. Phys., A 751, 87c (2005)

    Article  ADS  Google Scholar 

  3. Jungmann, K.: Fundamental symmetries and interactions — some aspects. Eur. Phys. J., A 25, 677 (2005)

    Article  Google Scholar 

  4. Behr, J.A., et al.: Weak interaction symmetries with atom traps. Eur. Phys. J., A 25, 685 (2005) and references therein

    Article  Google Scholar 

  5. Bennett, G.W., et al.: Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev., D 73, 072003 (2006) and references therein

    Article  ADS  Google Scholar 

  6. Gabrielse, G., et al.: New determination of the fine structure constant from the electron g-value and QED. Phys. Rev. Lett. 97, 030802 (2006)

    Article  ADS  Google Scholar 

  7. Odom, B., et al.: New Measurement of the electron magnetic moment using a one-electron quantum cyclotron. Phys. Rev. Lett. 97, 030801 (2006) and references therein

    Article  ADS  Google Scholar 

  8. van Dyck, R.S., et al.: New high-precision comparison of electron and positron g-factors. Phys. Rev. Lett. 59, 26 (1987)

    Article  ADS  Google Scholar 

  9. Severijns, N., Beck, M., Naviliat-Cuncic, 0.: Tests of the standard electroweak model in beta decay. nucl-ex/0605029 (2006)

    Google Scholar 

  10. Jungmann, K.: Searches for permanent electric dipole moments: some recent developments. In: Aulenbacher, K., Bradamante, F., Bressan, A., Martin, A. (eds.) Spin 2004, pp. 108–116. World Scientific Singapore (2005); see also: Symposium Lepton Moments III, Cape Cod. http://g2pc1.bu.edu/lept06/program.html (2006)

    Google Scholar 

  11. Jungmann, K.: Low energy antiproton experiments: a review. AIP Conf. Proc. 793, 18 (2005)

    Article  ADS  Google Scholar 

  12. Abele, H., et al.: Quark mixing, CKM unitarity. Eur. Phys. J., C 33, 1 (2004)

    Article  ADS  Google Scholar 

  13. Scielzo, N.D., et al.: Measurement of the β-ν correlation using magneto-optically trapped 21Na. Phys. Rev. Lett. 93, 102501 (2004)

    Article  ADS  Google Scholar 

  14. Bennett, S.C., Wieman, C.E.: Measurement of the 6S→7S transition polarizability in atomic cesium and an improved test of the standard model. Phys. Rev. Lett. 82, 2484 (1999)

    Article  ADS  Google Scholar 

  15. Eidelman, S.: Internat. Conf. High Energy Phys. Moscow (2006) hep-ex/0608025

    Google Scholar 

  16. Czarnecki, A., Marciano, W.J.: Electrons are not ambidextrous. Nature 435, 437 (2005)

    Article  ADS  Google Scholar 

  17. Aubin, S., et al.: Lifetime measurement of the 9s level of atomic francium. Opt. Lett. 2055 (2003)

    Google Scholar 

  18. Zhao, W.Z., et al.: Measurement of the 7p 2P3/2 level lifetime in atomic francium. Phys. Rev. Lett. 4169 (1997)

    Google Scholar 

  19. Gomez, E., et al.: Spectroscopy with trapped francium: advances and perspectives for weak interaction studies. Rep. Prog. Phys. 69, 79 (2006)

    Article  ADS  Google Scholar 

  20. Stancari, G., et al.: Francium sources at Laboratori Nazionali di Legnaro: design and performance. Rev. Sci. Instrum. 77, 03A701 (2006)

    Article  Google Scholar 

  21. Autov, S.N., et al.: Production and trapping of francium atoms. Nucl. Phys., A 746, 421C (2004)

    Article  ADS  Google Scholar 

  22. Sherman, J.A., et al.: Precision measurement of light shifts in a single trapped Ba+ ion. Phys. Rev. Lett. 94, 243001 (2004)

    Article  ADS  Google Scholar 

  23. Bergmann, T., Nachtmann, 0.: Atomic beam spin echo and parity violation. DPG, Frühjahrstagung, Frankfurt (2006)

    Google Scholar 

  24. Herczeg, P.: Beta decay beyond the standard model. Prog. Part. Nucl. Phys. 46, 413 (2001)

    Article  ADS  Google Scholar 

  25. Sohani, M.: TRIμP — a new facility to produce and trap radioactive isotopes. Acta Phys. Pol., B 37, 231 (2006)

    ADS  Google Scholar 

  26. Iacob, V.E., et al.: Branching ratios for the β-decay of 21Na. Phys. Rev., C 74, 015501 (2006)

    Article  ADS  Google Scholar 

  27. Gorelov, A., et al.: Scalar interaction limits from the β-ν correlation of trapped radioactive atoms. Phys. Rev. Lett. 94, 142501 (2005)

    Article  ADS  Google Scholar 

  28. Sandars, P.G.H.: Electric dipole moments of charged particles. Contemp. Phys. 42, 97 (2001) and references therein

    Article  ADS  Google Scholar 

  29. Liu, C.P., et al.: Schiff theorem and the electric dipole moments of hydrogen-like atoms. nucl-th/0601025 (2006)

    Google Scholar 

  30. Regan, B.C., et al.: New limit on the electron electric dipole moment. Phys. Rev. Lett. 88, 071805 (2002)

    Article  ADS  Google Scholar 

  31. McNabb, R., et al.: An improved limit on the electric dipole moment of the muon. hepex/ 0407008

    Google Scholar 

  32. Baker, C.A., et al.: An improved experimental limit on the electric dipole moment of the neutron. hep-ex/0602020 (2006)

    Google Scholar 

  33. Romalis, M.V., et al.: A new limit on the permanent electric dipole moment of Hg-199. Phys. Rev. Lett. 86, 2505 (2001)

    Article  ADS  Google Scholar 

  34. Ginges, J.S.M., Flambaum, V.V.: Violations of fundamental symmetries in atoms and tests of unification theories of elementary particles. Phys. Rep. 397, 63 (2004) and references therein

    Article  ADS  Google Scholar 

  35. Bieron, J., et al.: Lifetime and hyperfine structure of the D-3(2) state of radium. J. Phys., B 37, L305 (2004)

    Article  ADS  Google Scholar 

  36. Farley, F.J.M., et al.: New method of measuring electric dipole moments in storage rings. Phys. Rev. Lett. 93, 052001 (2004)

    Article  ADS  Google Scholar 

  37. Liu, C.P., Timmermans, R.G.E.: P-and T-odd two-nucleon interaction and the deuteron electric dipole moment. Phys. Rev., C 70, 055501 (2004)

    Article  ADS  Google Scholar 

  38. Jungmann, K.: In: Kluge, H.J., Jungmann, K., Khriplovich, I.B. (eds.) Proceedings of Workshop on Permanent Electric Dipole Moments. GSI (1999)

    Google Scholar 

  39. Onderwater, C.J.G.: Light ion EDM search in storage rings. Hyperfine Interact. (in press) and AIP Conf. Proc. 842, 784 (2006)

    Google Scholar 

  40. Baur, G., et al.: Production of antihydrogen. Phys. Lett., B 368, 251 (1996)

    Article  ADS  Google Scholar 

  41. Blanford, G., et al.: Observation of atomic antihydrogen. Phys. Rev. Lett. 80, 3037 (1998)

    Article  ADS  Google Scholar 

  42. Amoretti, M., et al.: Production and detection of cold antihydrogen atoms. Nature 419, 456 (2002)

    Article  ADS  Google Scholar 

  43. Gabrielse, G., et al.: Background-free observation of cold antihydrogen with field-ionization analysis of its states. Phys. Rev. Lett. 89, 213401 (2002)

    Article  ADS  Google Scholar 

  44. Gabrielse, G.: Atom made entirely of antimatter: two methods produce slow antihydrogen. Adv. At. Mol. Opt. Phys. 50 (2004)

    Google Scholar 

  45. Amoretti, M., et al.: Positron plasma diagnostics and temperature control for antihydrogen production. Phys. Rev. Lett. 91, 0055001–1 (2003)

    Article  ADS  Google Scholar 

  46. Amoretti, M., et al.: Dynamics of antiproton cooling in a positron plasma during antihydrogen formation. Phys. Lett., B 590, 133 (2004)

    Article  ADS  Google Scholar 

  47. Eikema, K.S.E., et al.: Continuous coherent Lyman-? Excitation of atomic hydrogen. Phys. Rev. Lett. 86, 5679 (2001)

    Article  ADS  Google Scholar 

  48. Storry, C.H., et al.: First laser-controlled antihydrogen production. Phys. Rev. Lett. 93, 263401 (2004)

    Article  ADS  Google Scholar 

  49. Wildman, E., et al.: Study of the hyperfine structure of antiprotonic helium. Nucl. Instrum. Methods, B 214, 89 (2004)

    Article  ADS  Google Scholar 

  50. Walz, J., Häusch, T.: A proposal to measure antimatter gravity using ultracold antihydrogen atoms. Gen. Relativ. Gravit. 36, 561 (2004)

    Article  MATH  ADS  Google Scholar 

  51. Yamazaki, T., et al.: Antiprotonic helium. Phys. Rep. 366, 183 (2002)

    Article  ADS  Google Scholar 

  52. Nakamura, S.N., et al.: Delayed annihilation of antiprotons in helium gas. Phys. Rev., A 49, 4457 (1994)

    Article  ADS  Google Scholar 

  53. Hori, M., et al.: Sub-ppm laser spectroscopy of antiprotonic helium and a CPT-violation limit on the antiprotonic charge and mass. Phys. Rev. Lett. 87, 093401 (2001)

    Article  ADS  Google Scholar 

  54. Yamazaki, T.: In: Karshenboim, S.G., et al. (eds.) The Hydrogen Atom, p. 246. Springer, Berlin Heidelberg New York (2001)

    Chapter  Google Scholar 

  55. Korobov, V.I.: Antiprotonic helium “atomcule”: relativistic and QED effects. Nucl. Phys., A 689, 75 (2001)

    Article  ADS  Google Scholar 

  56. Gabrielse, G., et al.: Precision mass spectroscopy of the antiproton and proton using. Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  57. Korobov, V., Baklanov, D.: Fine and hyperfine structure of the (37, 35) state of the 4He+ \( \bar p \) atom. J. Phys., B At. Mol. Opt. Phys. 34, L519 (2001)

    Article  ADS  Google Scholar 

  58. Korobov, V., Baklanov, D.: Hyperfine structure of antiprotonic helium energy levels. Hyperfine structure of antiprotonic helium energy levels. Phys. Rev., A 57, 1662 (1998)

    Article  ADS  Google Scholar 

  59. Widmann, E., et al.: Hyperfine structure of antiprotonic helium revealed by a laser-microwavelaser resonance method. Phys. Rev. Lett. 89, 243402 (2002)

    Article  ADS  Google Scholar 

  60. Hori, M., et al.: Direct measurement of transition frequencies in isolated p-bar He+ atoms, and new CPT-violation limits on the antiproton charge and mass. Phys. Rev. Lett. 91, 123401 (2003)

    Article  ADS  Google Scholar 

  61. Hori, M., et al.: Determination of the antiproton-to-electron mass ratio by precision laser spectroscopy of \( \bar p \)He+. Phys. Rev. Lett. 96, 243401 (2006)

    Article  ADS  Google Scholar 

  62. Berg, G.P., et al.: Dual magnetic separator for TRIμP. Nucl. Instrum. Methods, A 560, 169 (2006)

    Article  ADS  Google Scholar 

  63. Jungmann, K., et al.: TRIμP — trapped radiactive atoms — μicrolaboratories for fundamental physics. Phys. Scr., T 104, 178 (2003)

    Article  ADS  Google Scholar 

  64. Traykov, E., et al.: Production of radioactive nuclides in inverse reaction kinematics. nucl-exl0608016 (2006)

    Google Scholar 

  65. Pederson, S.G., et al.: β-decay studies of states in 12C. Proc. of Science, NIC-IX, 244 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Peter Jungmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science + Business Media B.V.

About this paper

Cite this paper

Jungmann, K.P. (2007). Tests of fundamental symmetries and interactions — using nuclei and lasers. In: Błaszczak, Z., Markov, B., Marinova, K. (eds) LASER 2006. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71113-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71113-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71112-4

  • Online ISBN: 978-3-540-71113-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics