Advertisement

EAP Using the Split Password-Based Authenticated Key Agreement

  • Jongho Ryu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4298)

Abstract

EAP (Extensible Authentication Protocol) provides authentication for each entity based on IEEE Std 802.1x wireless Local Area Networks and RADIUS/DIAMETER protocol and uses authentication certificates, passwords, and dual schemes (e.g., password and token). A password-based authentication scheme for authorized key exchange is a widely used user authentication scheme because it is easy to memorize, convenient, and portable. A specific hardware device is also unnecessary. This paper discusses user authentication via public networks and proposes the Split Password-based Authenticated Key Exchange (SPAKE), which is ideal for session key exchange when using secure encoded telecommunications. A secure EAP authentication framework, EAP-SPAKE, is also suggested.

Keywords

Wireless Local Area Network Authentication Scheme Mutual Authentication Authentication Server Forward Secrecy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carlson, J., Aboba, B., Haverinen, H.: EAP SRP-SHA1 Authentication Protocol. IETF Network Working Group <draft-ietf-pppext-eap-srp-03.txt> (2001)Google Scholar
  2. 2.
    Funk, P., Blake-Wilson, S.: EAP Tunneled TLS Authentication Protocol. IETF PPPEXT Working Group <draft-ietf-pppext-eap-ttls-02.txt> (2002)Google Scholar
  3. 3.
    Menezes, A., van Oorschot, P., Vanston, S.: Handbook of applied cryptography, p. 618. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  4. 4.
    Lee, S., Han, K., Kang, S.-k., Kim, K., Ine, S.: Threshold Password-Based Authentication Using Bilinear Pairings. In: Katsikas, S.K., Gritzalis, S., Lopez, J. (eds.) EuroPKI 2004. LNCS, vol. 3093, pp. 350–363. Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password Authenticated Key Exchange Using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Kwon, T.: Ultimate Solution to Authentication via Memorable Password. IEEE P1363.2 Working Group (2000)Google Scholar
  7. 7.
    Kwon, T.: Authentication and key agreement via memorable passwords. In: Proceedings of the ISOC Network and Distributed System Security (NDSS) (2001)Google Scholar
  8. 8.
    Hwang, Y., Yum, D., Lee, P.: EPA: An efficient password-based protocol for authenticated key exchange. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 324–335. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Kwon, T.: Addendum to Summary of AMP. IEEE P1363.2 Working Group (2003)Google Scholar
  10. 10.
    Bellovin, S., Merritt, M.: Encryted key exchange: password-based protocols secure against dictionary attacks. In: Proceedings of IEEE Comp. Society Symp. on Research in Security and Privacy, pp. 72–84. IEEE Computer Society Press, Los Alamitos (1992)CrossRefGoogle Scholar
  11. 11.
    Wu, T.: Secure remote password protocol. In: Proceedings of the 1998 Internet Society Network and Distributed System Security Symposium, pp. 97–111 (1998)Google Scholar
  12. 12.
    Bellare, M., Rogaway, P.: The AuthA protocolfor password-based authenticated key exchange. IEEE P1363.2 Working Group (2000)Google Scholar
  13. 13.
    MacKenzie, P., Shrimpton, T., Jakobsson, M.: Threshold Password Authenticated Key Exchange. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 369–384. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Wang, X.: Intrusion Tolerant Password-Enabled PKI. In: Proceedings of 2nd annual PKI Research Workshop (2002)Google Scholar
  15. 15.
    Kwon, T.: Refinement and Improvement of Virtual Software Token Protocols. IEEE Communications Letters 8(1), 75–77 (2004)CrossRefGoogle Scholar
  16. 16.
    Ford, W., Kaliski, B.: Server-Assisted Generation of a Strong Secret from a Password. IEEE P1363.2 Working Group (2000)Google Scholar
  17. 17.
    Kim, J.H., Radharkrishnan, S., Jang, J.S.: Cost Optimization in SIS model of Worm Infection. ETRIJ 28(5), 692–695 (2006)Google Scholar
  18. 18.
    Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated Key Exchange Secure Against Dictionary Attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Blake-Wilson, S., Menezes, A.: Authenticated Diffie-Hellman Key Agreement Protocols. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 339–361. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Maurer, U., Wolf, S.: Diffie-Hellman, Decision Diffie-Hellman, and Discrete Logarithms. In: Proceedings of IEEE International Symposium on Information Theory Society, p. 327. IEEE Computer Society Press, Los Alamitos (1998)Google Scholar
  21. 21.
    Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) Algorithmic Number Theory. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  22. 22.
    Denning, D., Sacco, G.: Timestamps in key distribution protocols. Communications of the ACM 24(8), 533–536 (1981)CrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Jongho Ryu
    • 1
  1. 1.Electronics and Telecommunications Research Institude, Daejeon-siKorea

Personalised recommendations