Advertisement

Controllable Ring Signatures

  • Wei Gao
  • Guilin Wang
  • Xueli Wang
  • Dongqing Xie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4298)

Abstract

This paper introduces a new concept called controllable ring signature which is ring signature with additional properties as follow. (1) Anonymous identification: by an anonymous identification protocol, the real signer can anonymously prove his authorship of the ring signature to the verifier. And this proof is non-transferable. (2) Linkable signature: the real signer can generate an anonymous signature such that every one can verify whether both this anonymous signature and the ring signature are generated by the same anonymous signer. (3) Convertibility: the real signer can convert a ring signature into an ordinary signature by revealing the secret information about the ring signature. These additional properties can fully ensure the interests of the real signer. Especially, compared with a standard ring signature, a controllable ring signature is more suitable for the classic application of leaking secrets. We construct a controllable ring signature scheme which is provably secure according to the formal definition.

Keywords

Signature Scheme Ring Signature Real Signer Secret Information Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdalla, M., An, J., Bellare, M., Namprempre, C.: From identification to signatures via the Fiat-Shamir transform: minimizing assumptions for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out-of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to Ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Chow, S.S.M., Lui, R.W.C., Hui, L.C.K., Yiu, S.M.: Identity based ring signature: why, how and what next. In: Chadwick, D., Zhao, G. (eds.) EuroPKI 2005. LNCS, vol. 3545, pp. 144–161. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Cramer, R., Damgård, I., MacKenzie, P.D.: Efficient zero-knowledge proofs of knowledge without intractability assumptions. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 354–372. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  7. 7.
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–199. Springer, Heidelberg (1987)Google Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen message attacks. SIAM Journal of Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lee, K.C., Wen, H.A., Hwang, T.: Convertible ring signature. IEE Proc.-Commun. 152(4), 411–414 (2005)CrossRefGoogle Scholar
  11. 11.
    Liu, J.K., Wei, V.K., Wong, D.S.: A separable threshold ring signature scheme. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 12–26. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Pedersen, T.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–149. Springer, Heidelberg (1992)Google Scholar
  15. 15.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13, 361–396 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Shamir, A., Rivest, R., Tauman, Y.: How to leak secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Tsang, P.P., Wei, V.K.: Short linkable ring signatures for e-voting, e-cash and attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Wei Gao
    • 1
  • Guilin Wang
    • 2
  • Xueli Wang
    • 3
  • Dongqing Xie
    • 4
  1. 1.College of Mathematics and Econometrics, Hunan University, Changsha 410082China
  2. 2.Institute for Infocomm Research, 21 Heng Mui Keng Terrace, 119613Singapore
  3. 3.School of Mathematics Science, South China Normal University, Guangzhou 510631China
  4. 4.School of Computer and Communication, Hunan University, Changsha 410082China

Personalised recommendations