Interactive Decision Tree Construction for Interval and Taxonomical Data

  • François Poulet
  • Thanh-Nghi Do
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)


Visual data-mining strategy lies in tightly coupling the visualizations and analytical processes into one data-mining tool that takes advantage of the assets from multiple sources. This paper presents two graphical interactive decision tree construction algorithms able to deal either with (usual) continuous data or with interval and taxonomical data. They are the extensions of two existing algorithms: CIAD [17] and PBC [3]. Both CIAD and PBC algorithms can be used in an interactive or cooperative mode (with an automatic algorithm to find the best split of the current tree node). We have modified the corresponding help mechanisms to allow them to deal with interval-valued attributes. Some of the results obtained on interval-valued and taxonomical data sets are presented with the methods we have used to create these data sets.


Interval Data Support Vector Machine Algorithm Decision Tree Algorithm Good Split Taxonomical Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, C.: Towards Effective and Interpretable Data Mining by Visual Interaction. SIKDD Explorations 3(2), 11–22,
  2. 2.
    Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)zbMATHGoogle Scholar
  3. 3.
    Ankerst, M., Elsen, C., Ester, M., Kriegel, H.-P.: Perception-Based Classification, in Informatica. An International Journal of Computing and Informatics 23(4), 493–499 (1999)Google Scholar
  4. 4.
    Ankerst, M.: Visual Data Mining, PhD Thesis, Ludwig Maximilians University of Munich (2000)Google Scholar
  5. 5.
    Ankerst, M., Ester, M., Kriegel, H.-P.: Toward an Effective Cooperation of the Computer and the User for Classification. In: Proc. of KDD 2001, pp. 179–188 (2001)Google Scholar
  6. 6.
    Blake, C., Merz, C.: UCI Repository of machine learning databases, University of California, Department of Information and Computer Science, Irvine, CA (1998),
  7. 7.
    Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Berlin (2000)Google Scholar
  8. 8.
    Breiman, L., Friedman, J., Olsen, R., Stone, C.: Classification and Regression Trees, Wadsworth (1984)Google Scholar
  9. 9.
    Chambers, J., Cleveland, W., Kleiner, B., Tukey, P.: Graphical Methods for Data Analysis. Wadsworth (1983)Google Scholar
  10. 10.
    Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.): Advances in Knowledge Discovery and Data Mining. AAAI Press, Menlo Park (1996)Google Scholar
  11. 11.
    Fung, G., Mangasarian, O.: Proximal Support Vector Machine Classifiers. In: Proc. of the 7th ACM SIGKDD, Int. Conf. on KDD 2001, San Francisco, USA, pp. 77–86 (2001)Google Scholar
  12. 12.
    Han, J., Cercone, N.J.: Interactive Construction of Decision Trees. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 575–580. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Inselberg, A., Avidan, T.: Classification and Visualization for High-Dimensional Data. In: Proc. of KDD 2000, pp. 370–374 (2000)Google Scholar
  14. 14.
    Mballo, C., Gioia, F., Diday, E.: Qualitative Coding of an Interval-Valued Variable. In: Proc. of the 35th Conference of the French Statistical Society, Lyon, France (in french) (June 2003)Google Scholar
  15. 15.
    Poulet, F.: Visualization in data mining and knowledge discovery. In: Lenca, P. (ed.) Proc. of HCP 1999, 10th Mini Euro Conference Human Centered Processes, Brest, pp. 183–192 (1999)Google Scholar
  16. 16.
    Poulet, F.: CIAD: Interactive Decision Tree Construction. In: Proc. of 8th Conf. of the French Classification Society, Pointe-à-Pitre, pp. 275–282 (2001) (in French)Google Scholar
  17. 17.
    Poulet, F.: Cooperation Between Automatic Algorithms, Interactive Algorithms and Visualization Tools for Visual Data Mining. In: Proc. of VDM@ECML/PKDD 2002, International Workshop on Visual Data Mining, Helsinki, Finland, pp. 67–80 (2002)Google Scholar
  18. 18.
    Poulet, F.: FullView: A Visual Data-Mining Environment. International Journal of Image and Graphics 2(1), 127–144 (2002)CrossRefGoogle Scholar
  19. 19.
    Quinlan, J.: C4.5: Programs for Machine Learning. Morgan-Kaufman Publishers, San Francisco (1993)Google Scholar
  20. 20.
    Schneiderman, B.: Inventing Discovery Tools: Combining Information Visualization with Data Mining. Information Visualization 1(1), 5–12 (2002)CrossRefGoogle Scholar
  21. 21.
    Ware, M., Franck, E., Holmes, G., Hall, M., Witten, I.: Interactive Machine Learning: Letting Users Build Classifiers. International Journal of Human-Computer Studies 55, 281–292 (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    Wong, P.: Visual Data Mining. IEEE Computer Graphics and Applications 19(5), 20–21 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • François Poulet
    • 1
  • Thanh-Nghi Do
    • 2
  1. 1.IRISA-TexmexUniversité de Rennes IRennes CedexFrance
  2. 2.Equipe InSitu INRIA Futurs, LRI, Bat.490Université Paris SudOrsay CedexFrance

Personalised recommendations