Advertisement

Visual Exploration of Frequent Itemsets and Association Rules

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)

Abstract

Frequent itemsets and association rules are defined on the powerset of a set of items and reflect the many-to-many relationships among the items. They bring technical challenges to information visualization which in general lacks effective visual technique to describe many-to-many relationships. This paper describes an approach for visualizing frequent itemsets and association rules by a novel use of parallel coordinates. An association rule is visualized by connecting its items, one on each parallel coordinate, with polynomial curves. In the presence of item taxonomy, an item taxonomy tree is displayed as coordinate and can be expanded or shrunk by user interaction. This interaction introduces a border in the generalized itemset lattice, which separates displayable itemsets from non-displayable ones. Only those frequent itemsets on the border are displayed. This approach can be generalized to the visualization of general monotone Boolean functions on lattice structure. Its usefulness is demonstrated through examples.

Keywords

Association Rule Frequent Itemsets Closure Property Taxonomy Tree Data Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proc. ACM SIGMOD Inter. Conf. on Management of Data (SIGMOD 1993), Washington, D.C, pp. 207–216 (1993)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Inter. Conf. on Very Large Data Bases (VLDB 1994), Santiago, Chile, pp. 207–216 (1994)Google Scholar
  3. 3.
    Liu, B., Hsu, W., Ma, Y.: Pruning and summarizing the discovered associations. In: Proc. 5th ACM SIGKDD Inter. Conf. on Knowledge Discovery and Data Mining (KDD 1999), San Diego, CA, pp. 145–154 (1999)Google Scholar
  4. 4.
    Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed representations. In: Proc. 2nd Inter. Conf. on Knowledge Discovery and Data Mining (KDD 1996), Portland, OR, pp. 189–194 (1996)Google Scholar
  5. 5.
    Yoda, K., Fukuda, T., Morimoto, Y., Morishita, T., Tokuyama, T.: Computing optimized rectilinear regions for association rules. In: Proc. 3rd Inter. Conf. on Knowledge Discovery and Data Mining (KDD 1997), Newport Beach, CA, pp. 96–103 (1997)Google Scholar
  6. 6.
    Bayardo, R.J., Agrawal, R.: Mining the most interesting rules. In: Proc. 5th ACM SIGKDD Inter. Conf. on Knowledge Discovery and Data Mining (KDD 1999), San Diego, CA, pp. 145–154 (1999)Google Scholar
  7. 7.
    Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, I.: Finding interesting rules from large sets of discovered association rules. In: Proc. 3rd ACM Inter. Conf. on Information and Knowledge Management (CIKM 1994), Gaithersburg, MD, pp. 401–407 (1994)Google Scholar
  8. 8.
    Yang, L.: Pruning and visualizing generalized association rules in parallel coordinates. IEEE Trans. Knowledge and Data Engineering 17, 60–70 (2005)CrossRefGoogle Scholar
  9. 9.
    Srikant, R., Agrawal, R.: Mining generalized association rules. In: Proc. 21st Inter. Conf. on Very Large Data Bases (VLDB 1995), Zurich, Switzerland, pp. 407–419 (1995)Google Scholar
  10. 10.
    Inselberg, A.: The plane with parallel coordinates. The Visual Computer 1, 69–91 (1985)zbMATHCrossRefGoogle Scholar
  11. 11.
    Inselberg, A., Reif, M., Chomut, T.: Convexity algorithms in parallel coordinates. Journal of the ACM 34, 765–801 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Inselberg, A.: Parallel coordinates: A tool for visualizing multi-dimensional geometry. In: Proc. 1st IEEE Conf. on Visualization, San Francisco, CA, pp. 361–375 (1990)Google Scholar
  13. 13.
    Inselberg, A., Dimsdale, B.: Multi-dimensional lines. SIAM J. Applied Mathematics 54, 559–596 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Inselberg, A.: Visualizing high dimensional datasets and multivariate relations (tutorial). In: Proc. 6th ACM SIGKDD Inter. Conf. on Knowledge Discovery and Data Mining (KDD 2000), Boston, MA (2000)Google Scholar
  15. 15.
    Martin, A., Ward, M.O.: High dimensional brushing for interactive exploration of multivariate data. In: Proc. IEEE Conf. on Visualization, Atlanta, GA, pp. 271–278 (1995)Google Scholar
  16. 16.
    Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining and Knowledge Discovery 1, 29–53 (1997)CrossRefGoogle Scholar
  17. 17.
    Beyer, K., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cube. In: Proc. ACM SIGMOD Conf. Management of Data (SIGMOD), Philadelphia, PA, pp. 359–370 (1999)Google Scholar
  18. 18.
    Gunopulos, D., Khardon, R., Mannila, H., Toivonen, H.: Data mining, hypergraph transversals, and machine learning. In: Proc. 16th ACM Symp. on Principles of Database Systems (PODS 1997), Tucson, AZ, pp. 209–216 (1997)Google Scholar
  19. 19.
    Bayardo, R.J.: Efficiently mining long patterns from databases. In: Proc. ACM SIGMOD Inter. Conf. on Management of Data (SIGMOD 1998), Seattle, WA, pp. 85–93 (1998)Google Scholar
  20. 20.
    Mannila, H., Meek, C.: Global partial orders from sequential data. In: Proc. 6th ACM SIGKDD Inter. Conf. on Knowledge Discovery and Data Mining (KDD 2000), Boston, MA, pp. 161–168 (2000)Google Scholar
  21. 21.
    Toivonen, H., Klemettinen, M., Ronkainen, P., Hatonen, K., Mannila, H.: Pruning and grouping of discovered association rules. In: ECML 1995 Workshop on Statistics, Machine Learning, and Knowledge Discovery in Databases, Heraklion, Crete, Greece, pp. 47–52 (1995)Google Scholar
  22. 22.
    Jaroszewicz, S., Simovici, D.A.: Pruning Redundant Association Rules Using Maximum Entropy Principle. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 135–147. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  23. 23.
    Silverstein, C., Brin, S., Motwani, R.: Beyond market baskets: Generalizing association rules to dependence rules. Data Mining and Knowledge Discovery 2, 39–68 (1998)CrossRefGoogle Scholar
  24. 24.
    Aggarwal, C.C., Yu, P.S.: Online generation of association rules. In: Proc. 14th Inter. Conf. on Data Engineering (ICDE 1998), Orlando, FL, pp. 402–411 (1998)Google Scholar
  25. 25.
    Wong, P.C., Whitney, P., Thomas, J.: Visualizing association rules for text mining. In: Proc. IEEE Symp. on Information Visualization (InfoVis 1999), San Franscisco, CA, pp. 120–123 (1999)Google Scholar
  26. 26.
    Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. In: Proc. ACM SIGMOD Inter. Conf. on Management of Data (SIGMOD 1996), Montreal, Canada, pp. 13–23 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Li Yang
    • 1
  1. 1.Department of Computer ScienceWestern Michigan University 

Personalised recommendations