Advertisement

A Visual Data Mining Environment

  • Stephen Kimani
  • Tiziana Catarci
  • Giuseppe Santucci
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)

Abstract

It cannot be overstated that the knowledge discovery process still presents formidable challenges. One of the main issues in knowledge discovery is the need for an overall framework that can support the entire discovery process. It is worth noting the role and place of visualization in such a framework. Visualization enables or triggers the user to use his/her outstanding visual and mental capabilities, thereby gaining insight and understanding of data. The foregoing points to the pivotal role that visualization can play in supporting the user throughout the entire discovery process. The work reported in this chapter is part of a project aiming at developing an open data mining system with a visual interaction environment that supports the user in the entire process of mining knowledge.

Keywords

Data Mining Association Rule Target Space Abstract Syntax Visual Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Agrawal et al.1993]
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 207–216. ACM Press, New York (1993)Google Scholar
  2. [Angoss]
    Angoss. Software corporation (link accessed on June 21st, 2004), http://www.angoss.com
  3. [Catarci and Santucci2001]
    Catarci, T., Santucci, G.: The prototype of the dare system. In: Proceedings of the ACM SIGMOD International Conference on Management of Data (2001)Google Scholar
  4. [Catarci et al.1999]
    Catarci, T., Santucci, G., Costabile, M.F., Cruz, I.F.: Foundations of the dare system for drawing adequate representations. In: Proceedings of the International Symposium on Database Applications in Non-Traditional Environments (1999)Google Scholar
  5. [Cox et al.1997]
    Cox, K.C., Eick, S.G., Wills, G.J., Brachman, R.J.: Visual data mining: Recognizing telephone calling fraud. Knowledge Discovery and Data Mining 1(2), 225–231 (1997)CrossRefGoogle Scholar
  6. [DBMiner]
    DBMiner. Technology inc. (link accessed on June 21st, 2004), http://www.dbminer.com
  7. [Erwig1998]
    Erwig, M.: Abstract syntax and semantics of visual languages. Journal of Visual Languages and Computing 9, 461–483 (1998)CrossRefGoogle Scholar
  8. [Ester et al.1996]
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)Google Scholar
  9. [Eudaptics]
    Eudaptics. Software gmbh (link accessed on June 21st, 2004), http://www.eudaptics.com
  10. [Fayyad et al.2002]
    Fayyad, U., Grinstein, G.G., Wierse, A. (eds.): Information Visualization in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  11. [Han et al.1996]
    Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, K., Li, D., Lu, Y., Rajan, A., Stefanovic, N., Xia, B., Zaiane, O.R.: Dbminer: A system for mining knowledge in large relational databases. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (1996)Google Scholar
  12. [Hansen and Jaumard1997]
    Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Mathematical Programming 79, 191–215 (1997)MathSciNetGoogle Scholar
  13. [Hao et al.1999a]
    Hao, M., Dayal, U., Hsu, M., Becker, J., D’Eletto, R.: A java-based visual mining infrastructure and applications. Technical Report HPL-1999-49, HP Labs (1999a)Google Scholar
  14. [Hao et al.1999b]
    Hao, M., Dayal, U., Hsu, M., D’Eletto, R., Becker, J.: A java-based visual mining infrastructure and applications. In: Proceedings of the IEEE International Symposium on Information Visualization, pp. 124–127. IEEE Computer Society Press, Los Alamitos (1999b)Google Scholar
  15. [Hinneburg and Keim1998]
    Hinneburg, A., Keim, D.A.: An efficient approach to clustering in large multimedia databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 58–65. AAAI Press, Menlo Park (1998)Google Scholar
  16. [Kimani et al.2002]
    Kimani, S., Catarci, T., Cruz, I.: Web rendering systems: Techniques, classification criteria, and challenges. In: Geroimenko, V., Chen, C. (eds.) Visualizing the Semantic Web. Springer, UK (2002)Google Scholar
  17. [Kimani et al.2003]
    Kimani, S., Catarci, T., Santucci, G.: Visual data mining: An experience with the users. In: Stephanidis, C. (ed.) Proceedings of HCI International - Universal Access in HCI: Inclusive Design in the Information Society. Lawrence Erlbaum Associates, Mahwah (2003)Google Scholar
  18. [Kimani et al.2004]
    Kimani, S., Lodi, S., Catarci, T., Santucci, G., Sartori, C.: Vidamine: A visual data mining environment. Journal of Visual Languages and Computing 15(1), 37–67 (2004)CrossRefGoogle Scholar
  19. [Leng and Shen1996]
    Leng, B., Shen, W.M.: A metapattern-based automated discovery loop for integrated data mining - unsupervised learning of relational patterns. IEEE Transactions on Knowledge and Data Engineering 8(6), 898–910 (1996)CrossRefGoogle Scholar
  20. [Mihalisin and Timlin1995]
    Mihalisin, T., Timlin, J.: Fast robust visual data mining. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 231–234. AAAI Press, Menlo Park (1995)Google Scholar
  21. [Mihalisin et al.1991]
    Mihalisin, T., Timlin, J., Schwegler, J.: Visualization and analysis of multi-variate data: A technique for all fields. In: Proceedings of the International Conference on Visualization (1991)Google Scholar
  22. [Mitbander et al.1996]
    Mitbander, B., Ong, K., Shen, W.M., Zaniolo, C.: Metaqueries for data mining, ch.15. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, AAAI Press/MIT Press, Menlo Park (1996)Google Scholar
  23. [Nielsen1994a]
    Nielsen, J.: Heuristic evaluation. In: Nielsen, J., Mack, R.L. (eds.) Usability Inspection Methods, John Wiley and Sons, Chichester (1994a)Google Scholar
  24. [Nielsen1994b]
    Nielsen, J.: Usability Engineering. Academic Press, London (1994b)Google Scholar
  25. [Santucci and Catarci2002]
    Santucci, G., Catarci, T.: Dare: A multidimensional environment for visualizing large sets of medical data. In: Proceedings of the International Conference on Information Visualisation (2002)Google Scholar
  26. [SAS]
    SAS. Enterprise miner (link accessed on June 21st, 2004), http://www.sas.com
  27. [Shneiderman1997]
    Shneiderman, B.: Designing the User Interface: Strategies for Effective Human-Computer Interaction. Addison-Wesley, Reading (1997)Google Scholar
  28. [Silverman1986]
    Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, Boca Raton (1986)zbMATHGoogle Scholar
  29. [SPSS]
    SPSS. Clementine (link accessed on June 21st, 2004), http://www.spss.com/clementine
  30. [Wills1997]
    Wills, G.J.: Nicheworks: Interactive visualization of very large graphs. In: Proceedings of the Symposium on Graph Drawing (1997)Google Scholar
  31. [Wills1999]
    Wills, G.J.: Nicheworks: Interactive visualization of very large graphs. Journal of Computational and Graphical Statistics 8(2), 190–212 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stephen Kimani
    • 1
  • Tiziana Catarci
    • 1
  • Giuseppe Santucci
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversitá di Roma “La Sapienza”RomaItaly

Personalised recommendations