Context Visualization for Visual Data Mining

  • Mao Lin Huang
  • Quang Vinh Nguyen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)


Context and history visualization plays an important role in visual data mining especially in the visual exploration of large and complex data sets. The preservation of context and history information in the visualization can improve user comprehension of the exploration process as well as enhance the reusability of mining techniques and parameters to archive the desired results. This chapter presents methodology and various interactive visualization techniques supporting visual data mining in general as well as for visual preservation of context and history information. Algorithms are also described in supporting such methodology for visual data mining in real time.


Visualization Technique Visual Data Information Visualization Interactive Visualization Visual Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lyman, P., Varian, H.R.: How much information?, University of California at Berkeley (accessed January 10, 2008) (2003),
  2. 2.
    Heer, J., Card, S.K., Landay, J.A.: Prefuse: a toolkit for interactive information visualization. In: Proc. CHI 2005, pp. 421–430 (2005)Google Scholar
  3. 3.
    Stolte, C., Tang, D., Hanrahan, P.: Polaris: a system for query, analysis, and visualization of multidimensional relational databases. IEEE Trans. Vis. Comput. Graph 8, 52–65 (2002)CrossRefGoogle Scholar
  4. 4.
    Ahlberg, C.: Spotfire: an information exploration environment. SIGMOD Record 25, 25–29 (1996)CrossRefGoogle Scholar
  5. 5.
    Roth, S.A., Lucas, P., Senn, J.A., et al.: Visage: a user interface environment for exploring information. In: Proc. IEEE Symposium on Information Visualization, San Francisco, pp. 3–12 (1996)Google Scholar
  6. 6.
    Kreuseler, M., Schumann, H.: A flexible approach for visual data mining. Trans. Vis. Comput. Graph 8, 39–51 (2002)CrossRefGoogle Scholar
  7. 7.
    Shneiderman, B.: The eye have it: a task by data type taxonomy for information visualization. In: Proc. IEEE Visual Languages, College Park, Maryland, pp. 336–343 (1996)Google Scholar
  8. 8.
    Herman, I., Melancon, G., Marshall, M.S.: Graph visualization in information visualization: a survey. IEEE Trans. Vis. Comput. Graph 6, 24–44 (2000)CrossRefGoogle Scholar
  9. 9.
    Chi, E.H.: A taxonomy of visualization techniques using the data state reference model. In: Proc. IEEE Symposium on Information Visualization, Salt Lake City, Utah, pp. 69–75 (2000)Google Scholar
  10. 10.
    Chi, E.H., Riedl, J.: An operator interaction framework for visualization systems. In: Proc. IEEE Symposium on Information Visualization, North Carolina, pp. 63–70 (1998)Google Scholar
  11. 11.
    Schulz, H.J., Nocke, T., Schumann, H.: A framework for visual data mining of structures. In: Proc. the 29th Australasian Computer Science Conference, Hobart, Australia, pp. 157–166 (2006)Google Scholar
  12. 12.
    de Oliveira, M.C.F., Levkowitz, H.: From Visual Data Exploration to Visual Data Mining: a survey. Trans. Vis. Comput. Graph 9, 378–394 (2003)CrossRefGoogle Scholar
  13. 13.
    Herman, I., Melancon, G., Marshall, M.S.: Graph visualization in information visualization: a survey. IEEE Trans. Vis. Comput. Graph 6, 24–44 (2000)CrossRefGoogle Scholar
  14. 14.
    Furnas, G.W.: Generalized fisheye views. In: Proc. SIGCHI 1986, Boston, Massachussetts, pp. 15–22 (1986)Google Scholar
  15. 15.
    Sarkar, M., Brown, M.H.: Graphical fisheye views. Communications of the ACM 37, 73–84 (1994)CrossRefGoogle Scholar
  16. 16.
    Kadmon, N., Shlomi, E.: A polyfocal projection for statistical surfaces. Cartographic Journal 15, 36–41 (1978)Google Scholar
  17. 17.
    Spence, R., Apperley, M.D.: A bifocal display technique for data presentation. In: Proc. Eurographics, pp. 27–43 (1982)Google Scholar
  18. 18.
    Mackinlay, J.D., Robertson, G.G., Card, S.K.: The perspective wall: detail and context smoothly integrated. In: Proc. ACM CHI 1991, New York, pp. 173–179 (1991)Google Scholar
  19. 19.
    North, C.: Multiple views and tight coupling in visualization: a Language, taxonomy, and system. In: Proc. International Multi-Conference in Computer Science and Computer Engineering, Las Vegas, Nevada, pp. 626–632 (2001)Google Scholar
  20. 20.
    Robert, J.C.: On encouraging multiple views for visualisation. In: Proc. International Conference on Information Visualisation, London, UK, pp. 8–14 (1998)Google Scholar
  21. 21.
    Robert, J.C.: Multiple-view and multiform visualization. Visual Data Exploration and Analysis 7, 176–185 (2000)Google Scholar
  22. 22.
    Stasko, J., Zhang, E.: Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations. In: Proc. IEEE Information Visualization, Utah, pp. 57–65 (2000)Google Scholar
  23. 23.
    Nguyen, Q.V., Huang, M.L.: A focus+context visualization technique using semi-transparency. In: Proc. 4th International Conference on Computer and Information Technology, Wuhan, China, pp. 101–108 (2004)Google Scholar
  24. 24.
    Jog, N.K., Shneiderman, B.: Starfield visualization with interactive smooth zooming. In: Proc. Visual Database Systems, Lausanne, Switzerland, pp. 3–14 (1995)Google Scholar
  25. 25.
    Johnson, B., Shneiderman, B.: Tree-maps: a space-filling approach to the visualization of hierarchical information structures. In: Proc. IEEE Visualization, Piscataway, NJ, pp. 284–291 (1991)Google Scholar
  26. 26.
    Perlin, K., Fox, D.: Pad: an alternative approach to the computer interface. In: Proc. ACM SIGGRAPH 1993, New York, pp. 57–64 (1993)Google Scholar
  27. 27.
    Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit design for interactive structured graphics. Transactions on Software Engineering 30, 535–546 (2004)CrossRefGoogle Scholar
  28. 28.
    Huang, M.L., Eades, P., Cohen, R.F.: On-line animated visualization of huge graphs using a modified spring algorithm. Journal of Visual Langages and Computing 9, 623–645 (1998)CrossRefGoogle Scholar
  29. 29.
    North, S.C.: Incremental layout in DynaDAG. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  30. 30.
    Brandes, U., Wagner, D.: A Bayesian paradigm for dynamic graph layout. In: Proc. Graph Drawing, Rome, Italy, pp. 236–247 (1997)Google Scholar
  31. 31.
    Hightower, R.R., Ring, L.T., Helfman, J.I., et al.: Graphical multiscale web histories: a study of PadPrints. In: Proc. ACM Conference on Hypertex, pp. 58–65 (1998)Google Scholar
  32. 32.
    Huang, M.L., Nguyen, Q.V.: Navigating large clustered graphs with triple-layer display. In: Proc. 11th International Conference on Information Visualisation (IV 2007), Zurich, Switzerland, pp. 684–689 (2007)Google Scholar
  33. 33.
    Kreyseler, M., Nocke, T., Schumann, H.: A history mechanism for visual data mining. In: Proc. IEEE Symposium on Information Visualization, Austin, Texas, pp. 49–56 (2004)Google Scholar
  34. 34.
    Jankun-Kelly, T.J., Ma, K.L., Gertz, M.: A model for the visualization exploration process. In: Proc. IEEE Visualization, pp. 323–330 (2002)Google Scholar
  35. 35.
    Derthick, M., Roth, S.F.: Enhancing data exploration with a branching history of user operations. Knowledge Based Systems 14, 65–74 (2001)CrossRefGoogle Scholar
  36. 36.
    Komlodi, A.: Search history for user support in information-seeking interfaces. In: Proc. Extended Abstracts of ACM CHI, Netherlands, pp. 75–76 (2000)Google Scholar
  37. 37.
    Gayer, M., Slavk, P.: Pre-calculated fluid simulator states tree. In: Proc. 12th IASTED In-ternational Conference on Applied Simulation and Modelling, Anaheim, pp. 610–615 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mao Lin Huang
    • 1
  • Quang Vinh Nguyen
    • 1
  1. 1.Faculty of Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations