Complementing Visual Data Mining with the Sound Dimension: Sonification of Time Dependent Data

  • Monique Noirhomme-Fraiture
  • Olivier Schöller
  • Christophe Demoulin
  • Simeon J. Simoff
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4404)


This chapter explores the extension of visual data mining by adding a sound dimension to the data representation. It presents the results of an early 2001 experiments with sonification of 2D and 3D time series data. A number of sonification means for these experiments have been implemented. The goal of these experiments was to determine how sonification of two and three-dimensional graphs can support and complement or even be an alternative to visually displayed graphs. The research methodology used the triangulation method, combining the automated generation of the sound patterns with two evaluation techniques. The first one included the assessment and evaluation of the sound sequences of the sonified data by the participants in the experiment via a dedicated server. The second one was based on the analysis of an evaluation questionnaire, filled by each participant that performed the tests. The chapter presents the results and the issues raised by the experiments.


Data Mining Algorithm Sonified Data Musical Experience Sheep Population Subject Preference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ankerst, M.: Visual Data Mining, in Ph.D. thesis. Faculty of Mathematics and Computer Science, University of Munich (2000)Google Scholar
  2. 2.
    Wickens, C.D., Carswell, C.M.: The proximity compatibility principle: Its psychological foundation and relevance to display design. Human Factors 37(3), 473–495 (1995)CrossRefGoogle Scholar
  3. 3.
    Simoff, S.J.: Towards the development of environments for designing visualisation support for visual data mining. In: Proceedings Int. Workshop on Visual Data Mining, 12th Euro-pean Conference on Machine Learning and 5th European Conference on Principles and Practice of Knowledge Discovery in Databases ECML/PKDD2001, Freiburg, Germany (2001)Google Scholar
  4. 4.
    Anrijs, K.: The use of sound in 3d representations of symbolic objects. Facultés Universitaires Notre-Dame de la Paix, Namur (1999)Google Scholar
  5. 5.
    Alty, J.L., Rigas, D., Vickers, P.: Using music as a communication medium. In: Proceedings of CHI 1997 (1997)Google Scholar
  6. 6.
    Brewster, S.A., Wright, P.C., Edwards, A.D.N.: An evaluation of ear-cons for use in auditory human-computer interfaces. In: Proceedings of Inter CHI 1993 (1993)Google Scholar
  7. 7.
    Conversy, S., Beaudouin-Lafon, M.: Le son dans les applications interactives. Laboratoire de Recherche en Informatique, Université de Paris-Sud, Paris (1995)Google Scholar
  8. 8.
    Hermann, T.: Data exploration by sonification (1999)Google Scholar
  9. 9.
    Kramer, G.: An introduction to auditory display, Auditory Display: Sonification, Audification, and Auditory Interfaces. Santa Fe Institute Studies in the Sciences of Complexity (1994)Google Scholar
  10. 10.
    Noirhomme-Fraiture, M.: Le son dans les interfaces IHM: Application à la représen-tation de données multivariées complexes, in Actes des 2èmes Journées Multimédia. Namur: PUN (2000)Google Scholar
  11. 11.
    Sahyun, S.C.: A comparison of auditory and visual graphs for use in physics and mathematics. Oregon State University (1999)Google Scholar
  12. 12.
    Kramer, G., Walker, B.N.: Sound science: Marking ten international conferences on auditory display. ACM Transactions on Applied Perception (TAP) 2(4), 383–388 (2005)CrossRefGoogle Scholar
  13. 13.
    Java, Javasound API programmer’s guide. Sun Microsystems (2000) Google Scholar
  14. 14.
    Ramloll, R., Yu, W., Brewster, S., Riedel, B., Burton, M., Dimigen, G.: Constructing sonified haptic line graphs for the blind student: First steps. In: Proceedings of the Fourth International ACM Conference on Assistive Technologies, Arlington, VA, 13-15 November (2000)Google Scholar
  15. 15.
    Zhao, H.: Interactive Sonification of Abstract Data - Framework, Design Space, Evaluation, and User Tool. PhD Thesis. College Park: University of Maryland, 288 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Monique Noirhomme-Fraiture
    • 1
  • Olivier Schöller
    • 1
  • Christophe Demoulin
    • 1
  • Simeon J. Simoff
    • 2
    • 3
  1. 1.Institut d’InformatiqueUniversity of NamurNamurBelgium
  2. 2.School of Computing and MathematicsUniversity of Western SydneyAustralia
  3. 3.Faculty of Information TechnologyUniversity of TechnologySydneyAustralia

Personalised recommendations