Skip to main content

Nuclear Pores in Plant Cells: Structure, Composition, and Functions

  • Chapter
  • 750 Accesses

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 14))

Abstract

The nuclear pores form the gateways connecting the nucleoplasm of eukaryotic cells with the cytoplasm. They are essentially fusions of the inner and outer nuclear membranes forming a connecting pore membrane and a “hole” in the nuclear envelope. They are organized and anchored by a multi-protein complex termed the nuclear pore complex (NPC), which facilitates and regulates the transport of molecules across the barrier provided by the nuclear envelope. While proteomics analysis has unraveled the molecular composition of the vertebrate and yeast NPC, our knowledge of the plant nuclear pore is still far from comprehensive. However, several components of the plant NPC and nucleocytoplasmic transport machinery have emerged in recent mutant screens and were found to affect diverse processes ranging from plant—microbe interactions and hormone and stress responses to development and the regulation of flowering time. Taken together, these studies illustrate the importance of the NPC and nucleocytoplasmic transport in the regulation of plant growth and responses to the environment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ach RA, Gruissem W (1994) A small nuclear GTP-binding protein from tomato suppresses a Schizosaccharomyces pombe cell-cycle mutant. Proc Natl Acad Sci USA 91:5863–5867

    PubMed  CAS  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    PubMed  CAS  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff LM, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait BT, Sali A, Rout MP (2007) The molecular architecture of the nuclear pore complex. Nature 450:695–701

    PubMed  CAS  Google Scholar 

  • Allen RS, Li J, Stahle MI, Dubroué A, Gubler F, Millar AA (2007) Genetic analysis reveals func tional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376

    PubMed  CAS  Google Scholar 

  • Arnaoutov A, Dasso M (2005) Ran-GTP regulates kinetochore attachment in somatic cells. Cell Cycle 4:1161–1165

    PubMed  CAS  Google Scholar 

  • Askjaer P, Galy V, Hannak E, Mattaj IW (2002) Ran GTPase cycle and importins α and β are essential for spindle formation and nuclear envelope assembly in living Caenorhabditis ele gans embryos. Mol Biol Cell 13:4355–4370

    PubMed  CAS  Google Scholar 

  • Ballas N, Citovsky V (1997) Nuclear localization signal binding protein from Arabidopsis medi ates nuclear import of Agrobacterium VirD2 protein. Proc Natl Acad Sci USA 94:10723–10728

    PubMed  CAS  Google Scholar 

  • Bayliss R, Ribbeck K, Akin D, Kent HM, Feldherr CM, Görlich D, Stewart M (1999) Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J Mol Biol 293:579–593

    PubMed  CAS  Google Scholar 

  • Belgareh N, Rabut G, Baï SW, van Overbeek M, Beaudouin J, Daigle N, Zatsepina OV, Pasteau F, Labas V, Fromont-Racine M, Ellenberg J, Doye V (2001) An evolutionarily conserved NPC subcomplex, which redistributes in part to kinetochores in mammalian cells. J Cell Biol 154:1147–1160

    PubMed  CAS  Google Scholar 

  • Ben-Efraim I, Gerace L (2001) Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J Cell Biol 152:411–417

    PubMed  CAS  Google Scholar 

  • Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504

    PubMed  CAS  Google Scholar 

  • Callan HG, Tomlin SG (1950) Experimental studies on amphibian oocyte nuclei. I. Investigations of the structure of the nuclear membrane by means of the electron microscope. Proc R Soc London B 137:367–378

    CAS  Google Scholar 

  • Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354

    PubMed  CAS  Google Scholar 

  • Cernac A, Lincoln C, Lammer D, Estelle M (1997) The SAR1 gene of Arabidopsis acts down stream of the AXR1 gene in auxin response. Development 124:1583–1591

    PubMed  CAS  Google Scholar 

  • Chial HJ, Rout MP, Giddings TH, Winey M (1998) Saccharomyces cerevisiae Ndc1p is a shared component of nuclear pore complexes and spindle pole bodies. J Cell Biol 143:1789–1800

    PubMed  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    PubMed  CAS  Google Scholar 

  • Ciciarello M, Mangiacasale R, Thibier C, Guarguaglini G, Marchetti E, Fiore1 BD, Lavia P (2004) Importin β is transported to spindle poles during mitosis and regulates Ran-dependent spindle assembly factors in mammalian cells. J Cell Sci 117:6511–6522

    PubMed  CAS  Google Scholar 

  • Ciciarello M, Mangiacasale R, Lavia P (2007) Spatial control of mitosis by the GTPase Ran. Cell Mol Life Sci 64:1891–1914

    PubMed  CAS  Google Scholar 

  • Clarke PR, Zhang C (2004) Spatial and temporal control of nuclear envelope assembly by Ran GTPase. Symp Soc Exp Biol 56:193–204

    PubMed  CAS  Google Scholar 

  • Cohen M, Wilson KL, Gruenbaum Y (2001) Membrane proteins of the nuclear pore complex: Gp210 is conserved in Drosophila, C. elegans and A. thaliana. Gene Ther Mol Biol 6:47–55

    Google Scholar 

  • Cordes VC, Reidenbach S, Rackwitz HR, Franke WW (1997) Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Cell Biol 136:515–529

    PubMed  CAS  Google Scholar 

  • Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927

    PubMed  CAS  Google Scholar 

  • Denning DP, Patel SS, Uversky V, Fink AL, Rexach M (2003) Disorder in the nuclear pore com plex: The FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci USA 100:2450–2455

    PubMed  CAS  Google Scholar 

  • Dong CH, Hu X, Tang W, Zheng X, Kim YS, Lee BH, Zhu JK (2006) A putative Arabidopsis nucleoporin, AtNUP160, is critical for RNA export and required for plant tolerance to cold stress. Mol Cell Biol 26:9533–9543

    PubMed  CAS  Google Scholar 

  • Dreger M, Otto H (2004) The nuclear envelope proteome. Symp Soc Exp Biol 56:9–40

    PubMed  CAS  Google Scholar 

  • Drummond S, Allen T (2004) Structure, function and assembly of the nuclear pore complex. Symp Soc Exp Biol 56:89–114

    PubMed  CAS  Google Scholar 

  • Enninga J, Levay A, Fontoura BM (2003) Sec13 shuttles between the nucleus and the cytoplasm and stably interacts with Nup96 at the nuclear pore complex. Mol Cell Biol 23:7271–7284

    PubMed  CAS  Google Scholar 

  • Erickson ES, Mooren OL, Moore D, Krogmeier JR, Dunn RC (2006) The role of nuclear envelope calcium in modifying nuclear pore complex structure. Can J Physiol Pharmacol 84:309–318

    PubMed  CAS  Google Scholar 

  • Evans DE, Bryant JA, Hutchison C (2004) The nuclear envelope: a comparative overview. Symp Soc Exp Biol 56:1–8

    PubMed  CAS  Google Scholar 

  • Faria AM, Levay A, Wang Y, Kamphorst AO, Rosa ML, Nussenzveig DR, Balkan W, Chook YM, Levy DE, Fontoura BM (2006) The nucleoporin Nup96 is required for proper expression of interferon-regulated proteins and functions. Immunity 24:295–304

    PubMed  CAS  Google Scholar 

  • Favreau C, Worman HJ, Wozniak RW, Frappier T, Courvalin JC (1996) Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Biochemistry 35:8035–8044

    PubMed  CAS  Google Scholar 

  • Feldherr CM, Akin D (1990) EM visualization of nucleocytoplasmic transport processes. Electron Microsc Rev 3:73–86

    PubMed  CAS  Google Scholar 

  • Fontoura BMA, Blobel G, Matunis MJ (1999) A conserved biogenesis pathway for nucleoporins: proteolytic processing of a 186-kilodalton precursor generates Nup98 and the novel nucleop orin, Nup96. J Cell Biol 144:1097–1112

    PubMed  CAS  Google Scholar 

  • Fribourg S, Braun IC, Izaurralde E, Conti E (2001) Structural basis for the recognition of a nucle oporin FG repeat by the NTF2-like domain of the TAP/p15 mRNA nuclear export factor. Mol Cell 8:645–656

    PubMed  CAS  Google Scholar 

  • Fujioka Y, Utsumi M, Ohba Y, Watanabe Y (2007) Location of a possible miRNA processing site in SmD3/SmB nuclear bodies in Arabidopsis. Plant Cell Physiol 48:1243–1253

    PubMed  CAS  Google Scholar 

  • Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translation inhibition in seedlings. Plant J 49:683–693

    PubMed  CAS  Google Scholar 

  • Gasiorowski JZ, Dean DA (2003) Mechanisms of nuclear transport and interventions. Adv Drug Deliv Rev 55:703–716

    PubMed  CAS  Google Scholar 

  • Gerace L, Burke B (1988) Functional organization of the nuclear envelope. Annu Rev Cell Biol 4:335–774

    PubMed  CAS  Google Scholar 

  • Gerace L, Foisner R (1994) Integral membrane proteins and dynamic organization of the nuclear envelope. Trends Cell Biol 4:127–131

    PubMed  CAS  Google Scholar 

  • Goldberg M, Harel A, Gruenbaum Y (1999) The nuclear lamina: molecular organization and interaction with chromatin. Crit Rev Eukaryot Gene Expr 9:285–293

    PubMed  CAS  Google Scholar 

  • Gong Z, Lee H, Xiong L, Jagendorf A, Stevenson B, Zhu JK (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512

    PubMed  CAS  Google Scholar 

  • Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267

    PubMed  CAS  Google Scholar 

  • Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    PubMed  Google Scholar 

  • Haltiwanger RS, Grove K, Philipsberg GA (1998) Modulation of O-linked N-acetylglucosamine levels on nuclear and cytoplasmic proteins in vivo using the peptide O-GlcNAc-β -N-acetylglucosaminidase inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate. J Biol Chem 273:3611–3617

    PubMed  CAS  Google Scholar 

  • Hang J, Dasso M (2002) Association of the human SUMO-1 protease SENP2 with the nuclear pore. J Biol Chem 277:19961–19966

    PubMed  CAS  Google Scholar 

  • Harel A, Chan RC, Lachish-Zalait A, Zimmerman E, Elbaum M, Forbes DJ (2003a) Importin β negatively regulates nuclear membrane fusion and nuclear pore complex assembly. Mol Biol Cell 14:4387–4396

    CAS  Google Scholar 

  • Harel A, Orjalo AV, Vincent T, Lachish-Zalait A, Vasu S, Shah S, Zimmermann E, Elbaum M, Forbes DJ (2003b) Removal of a single pore subcomplex results in vertebrate nuclei devoid of nuclear pores. Mol Cell 11:853–864

    CAS  Google Scholar 

  • Heese-Peck A, Raikhel NV (1998) A glycoprotein modified with terminal N-acetylglucosamine and localized at the nuclear rim shows sequence similarity to aldose-1-epimerases. Plant Cell 10:599–612

    PubMed  CAS  Google Scholar 

  • Heese-Peck A, Cole RN, Borkhsenious ON, Hart GW, Raikhel NV (1995) Plant nuclear pore complex proteins are modified by novel oligosaccharides with terminal N-acetylglucosamine. Plant Cell 7:1459–1471

    PubMed  CAS  Google Scholar 

  • Hicks GR, Smith HM, Lobreaux S, Raikhel NV (1996) Nuclear import in permeabilized proto plasts from higher plants has unique features. Plant Cell 8:1337–1352

    PubMed  CAS  Google Scholar 

  • Hinshaw JE, Carragher BO, Milligan RA (1992) Architecture and design of the nuclear pore complex. Cell 69:1133–1141

    PubMed  CAS  Google Scholar 

  • Hübner S, Smith HMS, Hu W, Chan CK, Rihs HP, Paschal BM, Raikhel NV, Jans DA (1999) Plant importin α binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin β. J Biol Chem 274:22610–22617

    PubMed  Google Scholar 

  • Hunter CA, Aukerman MJ, Sun H, Fokina M, Poethig RS (2003) PAUSED encodes the Arabidopsis exportin-t ortholog. Plant Physiol 132:2135–2143

    PubMed  CAS  Google Scholar 

  • Ishitani M, Xiong L, Lee H, Stevenson B, Zhu JK (1998) HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. Plant Cell 10:1151–1161

    PubMed  CAS  Google Scholar 

  • Jacob Y, Mongkolsiriwatana C, Veley KM, Kim SY, Michaels SD (2007) The nuclear pore protein AtTPR is required for RNA homeostasis, flowering time, and auxin signaling. Plant Physiol 144:1383–1390

    PubMed  CAS  Google Scholar 

  • Jeong SY, Rose A, Joseph J, Dasso M, Meier I (2005) Plant-specific mitotic targeting of RanGAP requires a functional WPP domain. Plant J 42:270–282

    PubMed  CAS  Google Scholar 

  • Joseph J, Liu ST, Jablonski SA, Yen TJ, Dasso M (2004) The RanGAP1-RanBP2 complex is essential for microtubule-kinetochore interactions in vivo. Curr Biol 14:611–617

    PubMed  CAS  Google Scholar 

  • Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Quistgaard EMH, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) A nucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis . Proc Natl Acad Sci USA 103:359–364

    PubMed  CAS  Google Scholar 

  • Kiger AA, Gigliotti S, Fuller MT (1999) Developmental genetics of the essential Drosophila nucleoporin nup154: allelic differences due to an outward-directed promoter in the P-element 3' end. Genetics 153:799–812

    PubMed  CAS  Google Scholar 

  • Kistner C, Parniske M (2002) Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518

    PubMed  CAS  Google Scholar 

  • Krull S, Thyberg J, Björkroth B, Rackwitz HR, Cordes VC (2004) Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket. Mol Biol Cell 15:4261–4277

    PubMed  CAS  Google Scholar 

  • Lee BH, Henderson DA, Zhua JK (2005) The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17:3155–3175

    PubMed  CAS  Google Scholar 

  • Li J, Chen X (2003) PAUSED, a putative exportin-at, acts pleiotropically in Arabidopsis develop ment but is dispensable for viability. Plant Physiol 132:1913–1924

    PubMed  CAS  Google Scholar 

  • Li D, Roberts R (2001) WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085–2097

    PubMed  CAS  Google Scholar 

  • Lim RY, Aebi U, Fahrenkrog B (2008) Towards reconciling structure and function in the nuclear pore complex. Histochem Cell Biol 129:105–116

    PubMed  CAS  Google Scholar 

  • Loïodice I, Alves A, Rabut G, Van Overbeek M, Ellenberg J, Sibarita JB, Doye V (2004) The entire Nup107–160 complex, including three new members, is targeted as one entity to kineto-chores in mitosis. Mol Biol Cell 15:3333–3344

    PubMed  Google Scholar 

  • Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594

    PubMed  CAS  Google Scholar 

  • Macaulay C, Meier E, Forbes DJ (1995) Differential mitotic phosphorylation of proteins of the nuclear pore complex. J Biol Chem 270:254–262

    PubMed  CAS  Google Scholar 

  • Mahajan R, Delphin C, Guan T, Gerace L, Melchior F (1997) A small ubiquitin-related polypep tide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97–107

    PubMed  CAS  Google Scholar 

  • Mahajan R, Gerace L, Melchior F (1998) Molecular characterization of the SUMO-1 modification of RanGAP1 and its role in nuclear envelope association. J Cell Biol 140:259–270

    PubMed  CAS  Google Scholar 

  • Mans BJ, Anantharaman V, Aravind L, Koonin EV (2004) Comparative genomics, evolution and origins of the nuclear envelope and nuclear pore complex. Cell Cycle 3:1612–1637

    PubMed  CAS  Google Scholar 

  • Mansfeld J, Güttinger S, Hawryluk-Gara LA, Panté N, Mall M, Galy V, Haselmann U, Mühlhäusser P, Wozniak RW, Mattaj IW, Kutay U, Antonin W (2006) The conserved trans-membrane nucleoporin NDC1 is required for nuclear pore complex assembly in vertebrate cells. Mol Cell 22:93–103

    PubMed  CAS  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    PubMed  CAS  Google Scholar 

  • Matunis MJ, Coutavas E, Blobel G (1996) A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J Cell Biol 135:1457–1470

    PubMed  CAS  Google Scholar 

  • Meier I (2007) Composition of the plant nuclear envelope: theme and variations. J Exp Bot 58:27–34

    PubMed  CAS  Google Scholar 

  • Merkle T (2001) Nuclear import and export of proteins in plants: a tool for the regulation of signalling. Planta 213:499–517

    PubMed  CAS  Google Scholar 

  • Merkle T (2008) Nuclear export of proteins and RNA. Plant Cell Monogr., doi:10.1007/ 7089_2008_25

    Google Scholar 

  • Merkle T, Haizel T, Matsumoto T, Harter K, Dallmann G, Nagy F (1994) Phenotype of the fission yeast cell cycle regulatory mutant pim1–46 is suppressed by a tobacco cDNA encoding a small, Ran-like GTP-binding protein. Plant J 6:555–565

    PubMed  CAS  Google Scholar 

  • Merkle T, Leclerc D, Marshallsay C, Nagy F (1996) A plant in vitro system for the nuclear import of proteins. Plant J 10:1177–1186

    PubMed  Google Scholar 

  • Miller BR, Powers M, Park M, Fischer W, Forbes DJ (2000) Identification of a new vertebrate nucleoporin, Nup188, with the use of a novel organelle trap assay. Mol Biol Cell 11:3381–3396

    PubMed  CAS  Google Scholar 

  • Murtas G, Reeves PH, Fu YF, Bancroft I, Dean C, Coupland G (2003) A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of SMALL UBIQUITIN-RELATED MODIFIER conjugates. Plant Cell 17:705–721

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    PubMed  CAS  Google Scholar 

  • Niepel M, Strambio-de-Castillia C, Fasolo J, Chait BT, Rout MP (2005) The nuclear pore com plex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. J Cell Biol 70:225–235

    Google Scholar 

  • Paddy MR (1998) The Tpr protein: linking structure and function in the nuclear interior? Am J Hum Genet 63:305–310

    PubMed  CAS  Google Scholar 

  • Palma K, Zhang Y, Li X (2005) An importin α homolog, MOS6, plays an important role in plant innate immunity. Curr Biol 15:1129–1135

    PubMed  CAS  Google Scholar 

  • Panté N, Aebi U (1996) Sequential binding of import ligands to distinct nucleopore regions during their nuclear import. Science 273:1729–1732

    PubMed  Google Scholar 

  • Panté N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of ̃39 nm. Mol Biol Cell 13:425–434

    PubMed  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102:3691–3696

    PubMed  CAS  Google Scholar 

  • Parry G, Ward S, Cernac A, Dharmasiri S, Estelle M (2006) The Arabidopsis SUPPRESSOR OF AUXIN RESISTANCE proteins are nucleoporins with an important role in hormone signaling and development. Plant Cell 18:1590–1603

    PubMed  CAS  Google Scholar 

  • Pay A, Resch K, Frohnmeyer H, Fejes E, Nagy F, Nick P (2002) Plant RanGAPs are localized at the nuclear envelope in interphase and associated with microtubules in mitotic cells. Plant J 30:699–709

    PubMed  CAS  Google Scholar 

  • Pemberton LF, Paschal BM (2005) Mechanisms of receptor-mediated nuclear import and nuclear export. Traffic 6:187–198

    PubMed  CAS  Google Scholar 

  • Qi H, Rath U, Wang D, Xu YZ, Ding Y, Zhang W, Blacketer MJ, Paddy MR, Girton J, Johansen J, Johansen KM (2004) Megator, an essential coiled-coil protein that localizes to the putative spindle matrix during mitosis in Drosophila. Mol Biol Cell 15:4854–4865

    PubMed  CAS  Google Scholar 

  • Reeves PH, Murtas G, Dash S, Coupland G (2002) early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 129:5349–5361

    PubMed  CAS  Google Scholar 

  • Reichelt R, Holzenburg A, Buhle Jr EL, Jarnik M, Engel A, Aebi U (1990) Correlation between structure and mass distribution of the nuclear pore complex and of distinct pore complex com ponents. J Cell Biol 110:883–894

    PubMed  CAS  Google Scholar 

  • Riely BK, Lougnon G, Ané JM, Cook DR (2007) The symbiotic ion channel homolog DMI1 is localized in the nuclear membrane of Medicago truncatula roots. Plant J 49:208–216

    PubMed  CAS  Google Scholar 

  • Ris H (1997) High-resolution field-emission scanning electron microscopy of nuclear pore com plex. Scanning 19:368–375

    PubMed  CAS  Google Scholar 

  • Roberts K, Northcote DH (1970) Structure of the nuclear pore in higher plants. Nature 228:385–386

    PubMed  CAS  Google Scholar 

  • Rose A, Meier I (2001) A domain unique to plant RanGAP is responsible for its targeting to the plant nuclear rim. Proc Natl Acad Sci USA 98:15377–15382

    PubMed  CAS  Google Scholar 

  • Rose A, Patel S, Meier I (2004) Plant nuclear envelope proteins. Symp Soc Exp Biol 56:69–88

    PubMed  CAS  Google Scholar 

  • Rosenblum JS, Blobel G (1999) Autoproteolysis in nucleoporin biogenesis. Proc Natl Acad Sci USA 96:11370–11375

    PubMed  CAS  Google Scholar 

  • Rout MP, Aitchison JD, Suprapto A, Hjertaas K, Zhao Y, Chait BT (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148:635–651

    PubMed  CAS  Google Scholar 

  • Ryan KJ, McCaffery JM, Wente SR (2003) The Ran GTPase cycle is required for yeast nuclear pore complex assembly. J Cell Biol 160:1041–1053

    PubMed  CAS  Google Scholar 

  • Saito K, Yoshikawa M, Yano K, Miwa H, Uchida H, Asamizu E, Sato S, Tabata S, Imaizumi-Anraku H, Umehara Y, Kouchi H, Murooka Y, Szczyglowski K, Downie JA, Parniske M, Hayashi M, Kawaguchi M (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624

    PubMed  CAS  Google Scholar 

  • Saracco SA, Miller MJ, Kurepa J, Vierstra RD (2007) Genetic analysis of SUMOylation in Arabidopsis: Conjugation of SUMO1 and SUMO2 to nuclear proteins is essential. Plant Physiol 145:119–134

    PubMed  CAS  Google Scholar 

  • Shah S, Tugendreich S, Forbes D (1998) Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Cell Biol 141:31–49

    PubMed  CAS  Google Scholar 

  • Shen QH, Schulze-Lefert P (2007) Rumble in the nuclear jungle: compartmentalization, traffick ing, and nuclear action of plant immune receptors. EMBO J 26:4293–4301

    PubMed  CAS  Google Scholar 

  • Siniossoglou S, Wimmer S, Rieger M, Doye V, Tekotte H, Weise C, Emig S, Segref A, Hurt EC (1996) A novel complex of nucleoporins, which includes Sec13p and a Sec13p homolog, is essential for normal nuclear pores. Cell 26:265–275

    Google Scholar 

  • Smith HMS, Raikhel NV (1999) Protein targeting to the nuclear pore. What can we learn from plants? Plant Physiol 119:1157–1163

    PubMed  CAS  Google Scholar 

  • Smith HMS, Hicks GR, Raikhel NV (1997) Importin α from Arabidopsis thaliana is a nuclear import receptor that recognizes three classes of import signals. Plant Physiol 114:411–417

    PubMed  CAS  Google Scholar 

  • Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 8:195–208

    PubMed  CAS  Google Scholar 

  • Stoffler D, Fahrenkrog B, Aebi U (1999) The nuclear pore complex: from molecular architecture to functional dynamics. Curr Opin Cell Biol 11:391–401

    PubMed  CAS  Google Scholar 

  • Strässer K, Bassler J, Hurt E (2000) Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. J Cell Biol 150:695–706

    PubMed  Google Scholar 

  • Stavru F, Hülsmann BB, Spang A, Hartmann E, Cordes VC, Görlich D (2006) NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes. J Cell Biol 173:509–519

    PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    PubMed  CAS  Google Scholar 

  • Teixeira MT, Siniossoglou S, Podtelejnikov S, Bénichou JC, Mann M, Dujon B, Hurt E, Fabre E (1997) Two functionally distinct domains generated by in vivo cleavage of Nup145p: a novel biogenesis pathway for nucleoporins. EMBO J 16:5086–5097

    PubMed  CAS  Google Scholar 

  • Thilmony R, Underwood W, He SY (2006) Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen Pseudomonas syringae pv. tomato DC3000 and the human pathogen Escherichia coli O157:H7. Plant J 46:34–53

    PubMed  CAS  Google Scholar 

  • Tzafrir I, Dickerman A, Brazhnik O, Nguyen Q, McElver J, Frye C, Patton D, Meinke D (2003) The Arabidopsis SeedGenes Project. Nucleic Acids Res 31:90–93

    PubMed  CAS  Google Scholar 

  • Uv AE, Roth P, Xylourgidis N, Wickberg A, Cantera R, Samakovlis C (2000) members only encodes a Drosophila nucleoporin required for rel protein import and immune response activa tion. Genes Dev 14:1945–1957

    PubMed  CAS  Google Scholar 

  • van Nocker S, Ludwig P (2003) The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genomics 4:50

    PubMed  Google Scholar 

  • Walther TC, Alves A, Pickersgill H, Loïodice I, Hetzer M, Galy V, Hülsmann BB, Köcher T, Wilm M, Allen T, Mattaj IW, Doye V (2003a) The conserved Nup107–160 complex is critical for nuclear pore complex assembly. Cell 113:195–206

    CAS  Google Scholar 

  • Walther TC, Askajer P, Gentzel M, Habermann A, Griffiths G, Wilm M, Mattaj JW, Hetzer M (2003b) RanGTP mediates nuclear pore complex assembly. Nature 424:689–694

    CAS  Google Scholar 

  • Wiermer M, Palma K, Zhang Y, Li X (2007) Should I stay or should I go? Nucleocytoplasmic trafficking in plant innate immunity. Cell Microbiol 9:1880–1890

    PubMed  CAS  Google Scholar 

  • Wu G, Poethig RC (2006) Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133:3539–3547

    PubMed  CAS  Google Scholar 

  • Xu XM, Meier I (2007) The nuclear pore comes to the fore. Trends Plant Sci 13:20–27

    PubMed  Google Scholar 

  • Xu XM, Meulia T, Meier I (2007a) Anchorage of plant RanGAP to the nuclear envelope involves novel nuclear-pore-associated proteins. Curr Biol 17:1157–1163

    CAS  Google Scholar 

  • Xu XM, Rose A, Muthuswamy S, Jeong SY, Venkatakrishnan S, Zhao Q, Meier I (2007b) NUCLEAR PORE ANCHOR, the Arabidopsis homolog of Tpr/Mlp1/Mlp2/Megator, is involved in mRNA export and SUMO homeostasis and affects diverse aspects of plant development. Plant Cell 19:1537–1548

    CAS  Google Scholar 

  • Yamamoto N, Deng XW (1999) Protein nucleocytoplasmic transport and its light regulation in plants. Genes Cells 4:489–500

    PubMed  CAS  Google Scholar 

  • Zhang Y, Li X (2005) A putative nucleoporin 96 is required for both basal defense and constitutive resistance responses mediated by suppressor of npr1-1, constitutive 1. Plant Cell 17:1306–1316

    PubMed  CAS  Google Scholar 

  • Zhang Q, Skepper JN, Yang F, Davies JD, Hegyi L, Roberts RG, Weissberg PL, Ellis JA, Shanahan CM (2001) Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J Cell Sci 114:4485–4498

    PubMed  CAS  Google Scholar 

  • Zhang C, Hutchins JR, Mühlhäusser P, Kutay U, Clarke PR (2002) Role of importin β in the control of nuclear envelope assembly by Ran. Curr Biol 12:498–502

    PubMed  CAS  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    PubMed  CAS  Google Scholar 

  • Zhao X, Wu CY, Blobel G (2004) Mlp-dependent anchorage and stabilization of a desumoylating enzyme is required to prevent clonal lethality. J Cell Biol 167:605–611

    PubMed  CAS  Google Scholar 

  • Zhou GK, Kubo M, Zhong R, Demura T, Ye ZH (2007) Overexpression of miR165 affects apical meristem formation, organ polarity establishment and vascular development in Arabidopsis Plant Cell Physiol 48:391–404

    PubMed  CAS  Google Scholar 

  • Zimowska G, Aris JP, Paddy MR (1997) A Drosophila Tpr protein homolog is localized both in the extrachromosomal channel network and to nuclear pore complexes. J Cell Sci 110:927–944

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rose, A. (2009). Nuclear Pores in Plant Cells: Structure, Composition, and Functions. In: Meier, I. (eds) Functional Organization of the Plant Nucleus. Plant Cell Monographs, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71058-5_3

Download citation

Publish with us

Policies and ethics