Skip to main content

Theoretical and Practical Issues of Ensemble Data Assimilation in Weather and Climate

  • Chapter
Book cover Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications

Abstract

Practical and theoretical issues of ensemble data assimilation are presented and discussed. In presenting the issues, the dynamical view, rather than a typical statistical view, is emphasized. From this point of view, most problems in ensemble data assimilation, and in data assimilation in general, are seen as means of producing an optimal state that is in dynamical balance, rather than producing a state that is optimal in a statistical sense. Although in some instances these two approaches may produce the same results, in general they are different. Details of this difference are discussed.

An overview of several fundamental issues in ensemble data assimilation is presented in more detail: dynamical balance of analysis/forecast, inclusion of nonlinear operators, and handling of reduced number of degrees of freedom in realistic high-dimensional applications.

An ensemble data assimilation algorithm named the Maximum Likelihood Ensemble Filter (MLEF) is described as a prototype method that addresses the above-mentioned issues. Some results with the MLEF are shown to illustrate its performance, including the assimilation of real observations with the Weather Research and Forecasting (WRF) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JL (2001) An ensemble adjustment Kalman filter data assimilation. Mon Wea Rev 129: 2884–2903

    Article  Google Scholar 

  • Arulampalam S, Maskell S, Gordon SN, Clapp T (2001) Tutorial on particle filters for on-line nonlinear/non-gaussian Bayesian tracking. IEEE Trans Signal Proc 50:174–188

    Article  Google Scholar 

  • Bishop CH, Etherton BJ, Majumdar SJ (2001) Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon Wea Rev 129:420–436

    Article  Google Scholar 

  • Bishop CH, Hodyss D (2007) Flow-adaptive moderation of spurious ensemble correlations and its use in ensemble-based data assimilation. Quart J Roy Meteor Soc 133:2029–2044

    Article  Google Scholar 

  • Brasseur P, Ballabrera-Poy J, Verron J (1999) Assimilation of altimetric data in the mid-latitude oceans using the Singular evolutive Extended Kalman filter with an eddy-resolving, primitive equation model. J Marine Syst 22:269–294

    Article  Google Scholar 

  • Cohn SE (1997) Estimation theory for data assimilation problems: Basic conceptual framework and some open questions. J Meteor Soc Japan 75: 257–288

    Google Scholar 

  • Courtier P et al (1998) The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart J Roy Meteor Soc 124:1783–1808

    Google Scholar 

  • Crisan D, Doucet A (2002) A survey of convergence results on particle filtering for practitioners. IEEE Trans Signal Proc 50:736–746

    Article  Google Scholar 

  • Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Statistics for engineering and information science, Springer-Verlag, New York, 622pp

    Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics. J Geophys Res 99:10143–10162

    Article  Google Scholar 

  • Evensen G, van Leeuwen PJ (2000) An ensemble Kalman smoother for nonlinear dynamics. Mon Wea Rev 128:1852–1867

    Google Scholar 

  • Fletcher SJ, Zupanski M (2006a) A data assimilation method for lognormally distributed observation errors. Quart J Roy Meteor Soc 132:2505–2520

    Article  Google Scholar 

  • Fletcher SJ, Zupanski M (2006b) A hybrid multivariate normal and lognormal distribution for data assimilation. Atmos Sci Let 7:43–46

    Article  Google Scholar 

  • Gordon NJ, Salmond DJ, Smith AFM (1993) Novel approach to nonlinear/non-gaussian Bayesian state estimation. Radar and Signal Process IEE-F 140:107–113

    Article  Google Scholar 

  • Hamill TM, Snyder C (2000) A hybrid ensemble Kalman filter – 3D variational analysis scheme. Mon Wea Rev 128:2905–2919

    Article  Google Scholar 

  • Hamill TM, Whitaker JS, Snyder C (2001) Distance-dependent filtering of background error covariance estimates in an ensemble Kalamn filter. Mon Wea Rev 129:2776–2790

    Article  Google Scholar 

  • Hamill, TM (2006) Ensemble-based atmospheric data assimilation. Predictability of weather and climate. In: Palmer T, Hagedorn R (eds) Cambridge University Press, Cambridge, 718pp

    Google Scholar 

  • Houtekamer PL, Mitchell HL (1998) Data assimilation using ensemble Kalman filter technique. Mon Wea Rev 126:796–811

    Article  Google Scholar 

  • Houtekamer PL, Mitchell HL (2001) A sequential ensemble Kalman filter for atmospheric data assimilation. Mon Wea Rev 129:123–137

    Article  Google Scholar 

  • Hunt BR, Kostelich EJ, Szunyogh I (2007) Efficient datra assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D 230: 112–126

    Article  Google Scholar 

  • Jazwinski AH (1970) Stochastic processes and filtering theory. Academic Press, New York.

    Google Scholar 

  • Liu JS, Chen R (1998) Sequential Monte Carlo methods for dynamic systems. J. Amer. Stat. Soc. 93:1032–1044

    Google Scholar 

  • Lorenc AC (1986) Analysis methods for numerical weather prediction. Quart J Roy Meteor Soc 112:1177–1194

    Article  Google Scholar 

  • Mandel J (2006) Efficient implementation of the ensemble Kalman filter. CCM Report 231, University of Colorado at Denver and Health Sciences Center, June 2006

    Google Scholar 

  • Mandel J (2007) A brief tutorial on the ensemble Kalman filter. CCM Report 242, University of Colorado at Denver and Health Sciences Center, February 2007

    Google Scholar 

  • Mihailovic DT, Kallaos G, Arsenic ID, Lalic B, Rajkovic B, Papadopoulos A (1999) Sensitivity of soil surface temperature in a force-restore equation to heat fluxes and deep soil temperature. Int J Climatol 19:1617–1632

    Article  Google Scholar 

  • Ott E, Hunt BR, Szunyogh I, Zimin AV, Kostelich EJ, Corazza M, Kalnay E, Patil DJ, Yorke JA (2004) A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A:273–277

    Google Scholar 

  • Parrish DF, Derber JC (1992) The National Meteorological Center’s spectral statistical interpolation analysis system. Mon Wea Rev 120:1747–1763

    Article  Google Scholar 

  • Pikovsky A, Politi A (1998) Dynamic localization of Lyapunov vectors in spacetime chaos. Nonlinearity 11:1049–1062

    Article  Google Scholar 

  • Pham DT, Verron J, Roubaud MC (1998) A singular evolutive extended Kalman filter for data assimilation in oceanography. J Marine Sys 16:323–340

    Article  Google Scholar 

  • Rabier F, Jarvinen H, Klinker E, Mahfouf J-F, Simmons A (2000) The ECMWF operational implementation of four-dimensional variational data assimilation. I: Experimental results with simplified physics. Quart J Roy Meteor Soc 126A:1143–1170

    Google Scholar 

  • Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Amer Meteorol Soc 82: 2357–2376

    Google Scholar 

  • Rozier D, Birol F, Cosme E, Brasseur P, Brankart JM, Verron J (2007) A reduced-order Kalman filter for data assimilation in physical oceanography. SIAM Rev 49:449–465

    Article  Google Scholar 

  • Tao W-K, Simpson J (1993) The Goddard cumulus ensemble model. Part I: model description. Terr Atmos Oceanic Sci 4:19–54

    Google Scholar 

  • Tao W-K, Simpson J, Baker D, Braun S, Johnson D, Ferrier B, Khain A, Lang S, Shie C-L, Starr D, Sui C-H, Wang Y, Wetzel P (2003) Microphysics, radiation and surface processes in a non-hydrostatic model. Meteorol Atmos Phys 82:97–137

    Article  Google Scholar 

  • Tippett MK, Anderson JL, Bishop CH, Hamill TM, Whitaker JS (2003) Ensemble square-root filters. Mon Wea Rev 131:1485–1490

    Article  Google Scholar 

  • van Leeuwen PJ (2003) A variance-minimizing filter for large-scale applications. Mon Wea Rev 131:2071–2084

    Article  Google Scholar 

  • Xiong X, Navon IM, Uzunoglu B (2006) A note on the particle filter with posterior Gaussian resampling. Tellus 58A:456–460

    Google Scholar 

  • Wang X, Hamill TM, Whitaker JS, Bishop CH (2006) A comparison of hybrid ensemble transform Kalman filter-optimum interpolation and ensemble square root filter analysis schemes. Mon Wea Rev 135:1055–1076

    Article  Google Scholar 

  • Whitaker JS, Hamill TM (2002) Ensemble data assimilation without perturbed observations. Mon Wea Rev 130:1913–1924

    Article  Google Scholar 

  • Zupanski D, Zupanski M (2006) Model error estimation employing ensemble data assimilation approach. Mon Wea Rev 134:1337–1354

    Article  Google Scholar 

  • Zupanski M (2005) Maximum likelihood ensemble filter: Theoretical aspects. Mon Wea Rev 133:1710–1726

    Article  Google Scholar 

  • Zupanski M, Navon IM, Zupanski D (2008) The maximum likelihood ensemble filter as a non-differentiable minimization algorithm. Quart J Roy Meteor Soc 134:1039–1050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zupanski, M. (2009). Theoretical and Practical Issues of Ensemble Data Assimilation in Weather and Climate. In: Park, S.K., Xu, L. (eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71056-1_3

Download citation

Publish with us

Policies and ethics