Skip to main content

Knowledge Discovery and Emergent Complexity in Bioinformatics

  • Conference paper
Knowledge Discovery and Emergent Complexity in Bioinformatics (KDECB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4366))

Abstract

In February 1943, the Austrian physicist Erwin Schrödinger, one of the founding fathers of quantum mechanics, gave a series of lectures at the Trinity College in Dublin, entitled “What Is Life? The Physical Aspect of the Living Cell and Mind”. In these lectures Schrödinger stressed the fundamental differences encountered between observing animate and inanimate matter, and advanced some at the time audacious hypotheses about the nature and molecular structure of genes, some ten years before the discoveries of Watson and Crick.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, A., Ross, J., McAdams, H.H.: Computational functions in biochemical reaction networks. Biophys. Journal 67, 560–578 (1994)

    Google Scholar 

  2. Ben-Hur, A., Siegelmann, H.T.: Computation in Gene Networks. Chaos 14(1), 145–151 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bower, J.M., Bolouri, H. (eds.): Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)

    Google Scholar 

  4. Burge, C., Karlin, S.: Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  Google Scholar 

  5. Davidson, E.H.: A View from the Genome: Spatial Control of Transcription in Sea Urchin Development. Current Opinions in Genetics and Development 9, 530–541 (1999)

    Article  Google Scholar 

  6. de Jong, H.: Modeling and Simulation of Genetic RegulatorySystems: A Literature Review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  7. de Jong, H., et al.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66(2), 301–340 (2004)

    Article  MathSciNet  Google Scholar 

  8. D’haeseleer, P., Liang, S., Somogyi, R.: Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering. Bioinformatics 16(8), 707–726 (2000)

    Article  Google Scholar 

  9. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)

    MATH  Google Scholar 

  10. Eisen, M.B., et al.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95(25), 14863–14868 (1998)

    Article  Google Scholar 

  11. Elowitz, M.B., et al.: Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002)

    Article  Google Scholar 

  12. Endy, D., Brent, R.: Modeling Cellular Behavior. Nature 409(6818), 391–395 (2001)

    Article  Google Scholar 

  13. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Sunderland (2004)

    Google Scholar 

  14. Friedman, N., et al.: Using Bayesian Networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)

    Article  Google Scholar 

  15. Glass, L., Kauffman, S.A.: The Logical Analysis of Continuous Non-linear Biochemical Control Networks. J.Theor.Biol. 39(1), 103–129 (1973)

    Article  Google Scholar 

  16. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002)

    Article  Google Scholar 

  17. Golub, T., et al.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  18. Gonze, D., Halloy, J., Goldbeter, A.: Stochastic models for circadian oscillations: Emergence of a biological rhythm. Int. J. Quantum Chem. 98, 228–238 (2004)

    Article  Google Scholar 

  19. Hastie, T., et al.: ’Gene shaving’ as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol. 1(2), research0003.1-0003.21 (2000)

    Google Scholar 

  20. Hasty, J., et al.: Computational studies of gene regulatory networks: in numero molecular biology. Nature Reviews Genetics 2(4), 268–279 (2001)

    Article  Google Scholar 

  21. Inza, I., et al.: Filter versus wrapper gene selection approaches in DNA microarray domains. Artificial Intelligence in Medicine, special issue in “Data mining in genomics and proteomics” 31(2), 91–103 (2004)

    Google Scholar 

  22. Kaelbling, L.P., Littman, L.M., Moore, A.W.: Reinforcement learning: a survey. Journal of Artificial Intelligence Research 4(1996), 237–285 (1996)

    Google Scholar 

  23. Krallinger, M., Valencia, A.: Text-mining and information-retrieval services for molecular biology. Genome Biol. 6(7), 224 (2005)

    Article  Google Scholar 

  24. Lambrinos, D., et al.: A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30(1-2), 39–64 (2000)

    Article  Google Scholar 

  25. Larrañaga, P., et al.: Machine Learning in Bioinformatics. Briefings in Bioinformatics 7(1), 86–112 (2006)

    Article  Google Scholar 

  26. Mathé, C., et al.: Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res. 30(19), 4103–4117 (2002)

    Article  Google Scholar 

  27. Mestl, T., Plahte, E., Omholt, S.W.: A Mathematical Framework for describing and analysing and Analyzing Gene Regulatory Networks. J. Theor. Biol. 176(2), 291–300 (1995a)

    Article  MathSciNet  Google Scholar 

  28. Mestl, T., Plahte, E., Omholt, S.W.: Periodic Solutions in Systems of Piecewise-Linear Systems. Synamic Stability of Systems 10(2), 179–193 (1995b)

    MathSciNet  MATH  Google Scholar 

  29. Narendra, K., Thathachar, M.: Learning Automata: An Introduction. Prentice-Hall International, Englewood Cliffs (1989)

    Google Scholar 

  30. Novak, B., Tyson, J.J.: Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. USA 94, 9147–9152 (1997)

    Article  Google Scholar 

  31. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  32. Peeters, R.L.M., Westra, R.L.: On the identification of sparse gene regulatory networks. In: Proc. of the 16th Intern. Symp. on Mathematical Theory of Networks and Systems (MTNS2004), Leuven, Belgium, July 5-9, pp. 5–9 (2004)

    Google Scholar 

  33. Rao, C.V., Wolf, D.M., Arkin, A.P.: Control, exploitation and tolerance of intracellular noise. Nature 420, 231–237 (2002)

    Article  Google Scholar 

  34. Ronquist, F., Huelsenbeck, J.P.: MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  Google Scholar 

  35. Rosenfeld, N., et al.: Gene regulation at the single-cell level. Science 307, 1962 (2005)

    Article  Google Scholar 

  36. Rustici, G., et al.: Periodic gene expression program of the fission yeast cell cycle. Nature Genetics 36(8), 809–817 (2004)

    Article  Google Scholar 

  37. Salzberg, S.L., et al.: Interpolated Markov models for eukaryotic gene finding. Genomics 59, 24–31 (1999)

    Article  Google Scholar 

  38. Segal, E., et al.: Module Networks: Identifying Regulatory Modules and their Condition Specific Regulators from Gene Expression Data. Nature Genetics 34(2), 166–176 (2003)

    Article  Google Scholar 

  39. Sheng, Q., Moreau, Y., De Moor, B.: Biclustering microarray data by Gibbs sampling. Bioinformatics 19(Suppl. 2), ii196–ii205 (2003)

    Google Scholar 

  40. Smith, V.A., Jarvis, E.D., Hartemink, A.J.: Evaluating Functional Network Inference Using Simulations of Complex Biological Systems. In: Proc. of the 10th international conference on Intelligent Systems for Molecular Biology (2002)

    Google Scholar 

  41. Somogyi, R., et al.: The Gene Expression Matrix: Towards the Extraction of Genetic Network Architectures. Nonlinear Analysis: Theory, Methods & Applications 30(3), 1815–1824 (1997)

    Article  MATH  Google Scholar 

  42. Swain, P.S.: Efficient attenuation of stochasticity in gene expression through post-transcriptional control. J. Mol. Biol. 344, 965 (2004)

    Article  Google Scholar 

  43. Swain, P.S., Elowitz, M.B., Siggia, E.D.: Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99(20), 12795–12800 (2002)

    Article  Google Scholar 

  44. Steuer, R.: Effects of stochasticity in models of the cell cycle:from quantized cycle times to noise-induced oscillations. Journal of Theoretical Biology 228, 293–301 (2004)

    Article  MathSciNet  Google Scholar 

  45. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  46. Verbeeck, K., Nowé, A.: Colonies of Learning Automata. IEEE Transactions on Systems, Man and Cybernetics - Part B, Special Issue on Learning Automata: Theory, Paradigms and Applications 32, 772–780 (2002)

    Google Scholar 

  47. Wolf, H., Wehner, R.: Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis Fortis. The Journal of Experimental Biology 203, 857–868 (2000)

    Google Scholar 

  48. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, Elsevier Science B.V., Amsterdam (1992)

    Google Scholar 

  49. Yeung, M.K.S., Tegnér, J., Collins, J.J.: Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99(9), 6163–6168 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl Tuyls Ronald Westra Yvan Saeys Ann Nowé

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Westra, R., Tuyls, K., Saeys, Y., Nowé, A. (2007). Knowledge Discovery and Emergent Complexity in Bioinformatics. In: Tuyls, K., Westra, R., Saeys, Y., Nowé, A. (eds) Knowledge Discovery and Emergent Complexity in Bioinformatics. KDECB 2006. Lecture Notes in Computer Science(), vol 4366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71037-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71037-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71036-3

  • Online ISBN: 978-3-540-71037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics