Skip to main content

Two-Gap Superconductivity in the Cuprate Superconductor La1.83Sr0.17CuO4

  • Chapter
High Tc Superconductors and Related Transition Metal Oxides

Abstract

Based on the idea of K.A. Müller [Nature (London) 377, 133 (1995)] that two superconducting condensates with s-wave and d-wave symmetries are present in high-temperature cuprate superconductors, we performed measurements of the in-plane magnetic field penetration depth (λ ab) in single-crystal La1.83Sr0.17CuO4 by means of the muon-spin rotation technique. The temperature dependence of λ −2 ab has an inflection point around 10–15 K, suggesting the opening of two superconducting gaps: a large gap (Δ1 d) with a d-wave and a small gap (Δ2 s) with an s-wave symmetry. The zero-temperature values of the gaps at μ 0 H =, obtained from the global fit of muon data, were found to be Δ1 d(0) = 8.2(1) meV and Δ2 s(0) = meV. With increasing magnetic field the contribution of Δ2 s decreases substantially, in contrast to an almost constant contribution of Δd 1. The magnetic field dependence of the transition temperature T c and the distribution of the local magnetic fields P(B) in La1.83Sr0.17CuO4 superconductor in the mixed state were also found to be consistent with the presence of two superconducting gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Keller H (2005) In: Müller KA, Bussmann-Holder A (eds) Struct Bond 114:114–143

    Google Scholar 

  • Khasanov R, Shengelaya A, Conder K, Morenzoni E, Savic IM, Karpinski J, Keller H (2006) Phys Rev B 74:064504

    Article  ADS  Google Scholar 

  • Kresin VZ, Wolf SA (1992) Phys Rev B 46:6458

    Article  ADS  Google Scholar 

  • Müller KA (1995) Nature (London) 377:133

    Article  ADS  Google Scholar 

  • Müller KA (1996) J Phys Soc Jap 65:3090

    Article  ADS  Google Scholar 

  • Müller KA, Keller H (1996) In: High-T c Superconductivity: Ten years after discovery, 1997 Kluwer Academic Publishers pp 7–29

    Google Scholar 

  • Binnig G, Baratoff A, Hoenig HE, Bednorz JG (1980) Phys Rev Lett 45:1352

    Article  ADS  Google Scholar 

  • Schooley JF, Hosler WR, Cohen ML (1964) Phys Rev Lett 12:474

    Article  ADS  Google Scholar 

  • Deutscher G (2005) Rev Mod Phys 77:109

    Article  ADS  Google Scholar 

  • Yeh N-C, Chen C-T, Hammerl G, Mannhart J, Schmehl A, Schneider CW, Schulz RR, Tajima S, Yoshida K, Garrigus D, Strasik M (2001) Phys Rev Lett 87:087003

    Article  ADS  Google Scholar 

  • Heyen ET, Cardona M, Karpinski J, Kaldis E, Rusiecki S (1991) Phys Rev B 43:12958

    Article  ADS  Google Scholar 

  • Masui T, Limonov M, Uchiyama H, Lee S, Tajima S, Yamanaka A (2003) Phys Rev B 68:060506(R)

    Article  ADS  Google Scholar 

  • Stern R, Mali M, Roos J, Brinkmann D (1995) Phys Rev B 51:15478

    Article  ADS  Google Scholar 

  • Furrer A (2005) In: Superconductivity in complex sysytems. Springer Berlin, Heidelberg, pp 171–204

    Google Scholar 

  • Khasanov R, Shengelaya A, Maisuradze A, La Mattina F, Bussmann-Holder A, Keller H, Müller KA (2007) to be published in Phys Rev Lett 98:057007

    Google Scholar 

  • Sonier JE, Brewer JH, Kiefl RF (2000) Rev Mod Phys 72:769

    Article  ADS  Google Scholar 

  • Serventi S, Allodi G, De Renzi R, Guidi G, Romanò L, Manfrinetti P, Palenzona A, Niedermayer C, Amato A, Baines C (2004) Phys Rev Lett 93:217003

    Article  ADS  Google Scholar 

  • Carrington A, Manzano F (2003) Physica C 385:205

    Article  ADS  Google Scholar 

  • Nakano T, Momono N, Oda M, Ido M (1998) J Phys Soc Jap 67:2622

    Article  ADS  Google Scholar 

  • Gilardi R (2004) PhD thesis, ETH Zurich

    Google Scholar 

  • Zimmermann P, Keller H, Lee SL, Savic IM, Warden M, Zech D, Cubitt R, Forgan EM, Kaldis E, Karpinski J, Krüger C (1995) Phys Rev B 52:541

    Article  ADS  Google Scholar 

  • Brandt EH (1988) Phys Rev B 37:R2349

    Article  MathSciNet  ADS  Google Scholar 

  • Khasanov R, Eshchenko DG, Di Castro D, Shengelaya A, La Mattina F, Maisuradze A, Baines C, Luetkens H, Karpinski J, Kazakov SM, Keller H (2005) Phys Rev B 72:104504

    Article  ADS  Google Scholar 

  • Xiang T, Wheatley JM (1996) Phys Rev Lett 76:134

    Article  ADS  Google Scholar 

  • Bussmann-Holder A, Khasanov R, Shengelaya A, Maisuradze A, La Mattina F, Keller H, Müller KA (2007) to be published in Europhys Lett 77:27002

    Google Scholar 

  • Niedermayer C, Bernhard C, Holden T, Kremer RK, Ahn K (2002) Phys Rev B 65:094512

    Article  ADS  Google Scholar 

  • Kim M-S, Skinta JA, Lemberger TR, Kang WN, Kim H-J, Choi E-M, Lee S-I (2002) Phys Rev B 66:064511

    Article  ADS  Google Scholar 

  • Mühlschlegel B (1959) Z Phys 155:313

    Article  MATH  ADS  Google Scholar 

  • Oda M, Momono N, Ido M (2000) Supercond Sci Technol 13:R139

    Article  ADS  Google Scholar 

  • Gilardi R, Mesot J, Drew A, Divakar U, Lee SL, Forgan EM, Zaharko O, Conder K, Aswal VK, Dewhurst CD, Cubitt R, Momono N, Oda M (2002) Phys Rev Lett 88:217003

    Article  ADS  Google Scholar 

  • Drew AJ, Heron DOG, Divakar UK, Lee SL, Gilardi R, Mesot J, Ogrin FY, Charalambous D, Momono N, Oda M, Baines C (2006) Physica B 203:374–375

    Google Scholar 

  • Suderow H, Tissen VG, Brison JP, Martinez JL, Vieira S, Lejay P, Lee S, Tajima S (2004) Phys Rev B 70:134518

    Article  ADS  Google Scholar 

  • Yang HD, Lin J-Y, Sun CP, Kang YC, Huang CL, Takada K, Sasaki T, Sakurai H, Takayama-Muromachi E (2005) Phys Rev B 71:020504(R)

    Article  ADS  Google Scholar 

  • Shulga SV, Drechsler S-L, Fuchs G, Müller K-H, Winzer K, Heinecke M, Krug K (1988) Phys Rev Lett 80:1730

    Article  ADS  Google Scholar 

  • Prohammer M, Schachinger E (1987) Phys Rev B 36:8353

    Article  ADS  Google Scholar 

  • Kao J-T, Lin J-Y, Mou C-Y (2007) Phys Rev B 75:012503

    Article  ADS  Google Scholar 

  • Cubitt R, Eskildsen MR, Dewhurst CD, Jun J, Kazakov SM, Karpinski J (2003) Phys Rev Lett 91:047002

    Article  ADS  Google Scholar 

  • Gonnelli RS, Daghero D, Ummarino GA, Stepanov VA, Jun J, Kazakov SM, Karpinski J (2002) Phys Rev Lett 89:247004

    Article  ADS  Google Scholar 

  • Harshman DR, Kossler WJ, Wan X, Fiory AT, Greer AJ, Noakes DR, Stronach CE, Koster E, Dow JD (2004) Phys Rev B 69:174505

    Article  ADS  Google Scholar 

  • Panagopoulos C, Tallon JL, Xiang T (1999) Phys Rev B 59:R6635

    Article  ADS  Google Scholar 

  • Khasanov R, Karpinski J, Keller H (2005) J Phys: Condens Matter 17:2453

    Article  ADS  Google Scholar 

  • Luke GM, Fudamoto Y, Kojima K, Larkin M, Merrin J, Nachumi B, Uemura YJ, Sonier JE, Ito T, Oka K, de Andrad M, Maple MB, Uchida S (1997) Physica C 1465:282–287

    Google Scholar 

  • Skinta JA, Lemberger TR, Greibe T, Naito M (2002) Phys Rev Lett 88:207003

    Article  ADS  Google Scholar 

  • Brandt EH (1988) J Low Temp Phys 73:355

    Article  ADS  Google Scholar 

  • It was assumed that apperance of two superfluids leads to presence of two penetration depths rather than two coherence lenghths as suggested by Serventi et al. in [17]. This scenario is inderectly confirmed by calculations of Amin [Amin MHS, PhD thesis, cond-mat/0011455] showing that an s-wave admixture naturally leads to appearance of two peaks on P id(B).

    Google Scholar 

  • Perry JK, Tahir-Kheli J, Goddard WA (2002) Phys Rev B 65:144501

    Article  ADS  Google Scholar 

  • Božin ES, Billinge SJL (2005) Phys Rev B 72:174427

    Article  ADS  Google Scholar 

  • Damascelli A, Hussain Z, Shen Z-X (2003) Rev Mod Phys 75:473

    Article  ADS  Google Scholar 

  • Xiang T, Panagopoulos C, Cooper JR (1998) Int J Mod Phys B 12:1007

    Article  ADS  Google Scholar 

  • Tamasaku K, Ito T, Takagi H, Uchida S (1994) Phys Rev Lett 72:3088

    Article  ADS  Google Scholar 

  • Hofer J, Schneider T, Singer JM, Willemin M, Keller H, Sasagawa T, Kishio K, Conder K, Karpinski J (2000) Phys Rev B 62:631–639

    Article  ADS  Google Scholar 

  • Hussey NE, Abdel-Jawad M, Carrington A, Mackenzie AP, Ballcas L (2003) Nature (London) 425:814

    Article  ADS  Google Scholar 

  • Bansil A, Lindroos M, Sahrakorpi S, Markiewicz RS (2005) Phys Rev B 71:012503

    Article  ADS  Google Scholar 

  • Sahrakorpi S, Lindroos M, Markiewicz RS, Bansil A (2005) Phys Rev Lett 95:157601

    Article  ADS  Google Scholar 

  • Markiewicz RS, Sahrakorpi S, Lindroos M, Lin H, Bansil A (2005) Phys Rev B 72:054519

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khasanov .

Editor information

Annette Bussmann-Holder Hugo Keller

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Khasanov, R., Shengelaya, A., Bussmann-Holder, A., Keller, H. (2007). Two-Gap Superconductivity in the Cuprate Superconductor La1.83Sr0.17CuO4 . In: Bussmann-Holder, A., Keller, H. (eds) High Tc Superconductors and Related Transition Metal Oxides. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71023-3_14

Download citation

Publish with us

Policies and ethics