Skip to main content

DNA helicases in recombination

  • Chapter
Molecular Genetics of Recombination

Part of the book series: Topics in Current Genetics ((TCG,volume 17))

  • 1831 Accesses

Abstract

The different pathways of homologous recombination involve the recognition and pairing of homologous DNA sequences promoted by proteins that catalyze strand exchange. Other steps in recombination involve double stranded DNA unwinding for branch migration activities, and in some cases the reannealing of single DNA strands. These processes do not occur spontaneously and so require DNA helicase enzymes that unwind the DNA helices. DNA helicases also have additional and sometimes unexpected functions in homologous recombination. These include anti-recombination activities that either reverse strand pairings or destabilize the primary homologous recombination intermediate, a single stranded DNA molecule coated with Rad51 protein that is primed to promote strand exchange. This latter novel anti-recombinase activity is especially important during the repair of stalled replication forks. This review examines the roles of eukaryotic DNA helicases in promoting and antagonizing homologous recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aboussekhra A, Chanet R, Adjiri A, Fabre F (1992) Semidominant suppressors of Srs2 helicase mutations of Saccharomyces cerevisiae map in the RAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Mol Cell Biol 12:3224–3234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aboussekhra A, Chanet R, Zgaga Z, Cassier-Chauvat C, Heude M, Fabre F (1989) RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res 17:7211–7219

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adams MD, McVey M, Sekelsky JJ (2003) Drosophila BLM in double-strand break repair by synthesis-dependent strand annealing. Science 299:265–267

    CAS  PubMed  Google Scholar 

  • Aguilera A, Klein HL (1988) Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119:779–790

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ajima J, Umezu K, Maki H (2002) Elevated incidence of loss of heterozygosity (LOH) in an sgs1 mutant of Saccharomyces cerevisiae: roles of yeast RecQ helicase in suppression of aneuploidy, interchromosomal rearrangement, and the simultaneous incidence of both events during mitotic growth. Mutat Res 504:157–172

    CAS  PubMed  Google Scholar 

  • Aylon Y, Liefshitz B, Bitan-Banin G, Kupiec M (2003) Molecular dissection of mitotic recombination in the yeast Saccharomyces cerevisiae. Mol Cell Biol 23:1403–1417

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bailis AM, Maines S, Negritto MT (1995) The essential helicase gene RAD3 suppresses short-sequence recombination in Saccharomyces cerevisiae. Mol Cell Biol 15:3998–4008

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bastin-Shanower SA, Fricke WM, Mullen JR, Brill SJ (2003) The mechanism of Mus81-Mms4 cleavage site selection distinguishes it from the homologous endonuclease Rad1-Rad10. Mol Cell Biol 23:3487–3496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett RJ, Sharp JA, Wang JC (1998) Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J Biol Chem 273:9644–9650

    CAS  PubMed  Google Scholar 

  • Bhattacharyya S, Lahue RS (2004) Saccharomyces cerevisiae Srs2 DNA helicase selectively blocks expansions of trinucleotide repeats. Mol Cell Biol 24:7324–7330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharyya S, Lahue RS (2005) Srs2 helicase of Saccharomyces cerevisiae selectively unwinds triplet repeat DNA. J Biol Chem 280:33311–33317

    CAS  PubMed  Google Scholar 

  • Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862

    CAS  PubMed  Google Scholar 

  • Blasco MA (2005) Mice with bad ends: mouse models for the study of telomeres and telomerase in cancer and aging. Embo J 24:1095–1103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borner GV, Kleckner N, Hunter N (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117:29–45

    PubMed  Google Scholar 

  • Boule JB, Vega LR, Zakian VA (2005) The yeast Pif1p helicase removes telomerase from telomeric DNA. Nature 438:57–61

    CAS  PubMed  Google Scholar 

  • Boyd JB, Sakaguchi K, Harris PV (1990) mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics 125:813–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broomfield S, Xiao W (2002) Suppression of genetic defects within the RAD6 pathway by srs2 is specific for error-free postreplication repair but not for damage-induced mutagenesis. Nucleic Acids Res 30:732–739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cantor S, Drapkin R, Zhang F, Lin Y, Han J, Pamidi S, Livingston DM (2004) The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. Proc Natl Acad Sci USA 101:2357–2362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cantor SB, Andreassen PR (2006) Assessing the Link between BACH1 and BRCA1 in the FA Pathway. Cell Cycle 5:164–167

    CAS  PubMed  Google Scholar 

  • Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, Wahrer DC, Sgroi DC, Lane WS, Haber DA, Livingston DM (2001) BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 105:149–160

    CAS  PubMed  Google Scholar 

  • Chanet R, Heude M, Adjiri A, Maloisel L, Fabre F (1996) Semidominant mutations in the yeast Rad51 protein and their relationships with the Srs2 helicase. Mol Cell Biol 16:4782–4789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen C, Zhang W, Timofejeva L, Gerardin Y, Ma H (2005) The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation. Plant J 43:321–334

    CAS  PubMed  Google Scholar 

  • Cheok CF, Wu L, Garcia PL, Janscak P, Hickson ID (2005) The Bloom’s syndrome helicase promotes the annealing of complementary single-stranded DNA. Nucleic Acids Res 33:3932–3941

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and colocalizes with RPA upon replication arrest. EMBO Rep 1:80–84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui S, Klima R, Ochem A, Arosio D, Falaschi A, Vindigni A (2003) Characterization of the DNA-unwinding activity of human RECQ1, a helicase specifically stimulated by human replication protein A. J Biol Chem 278:1424–1432

    CAS  PubMed  Google Scholar 

  • d’Adda di Fagagna F, Teo SH, Jackson SP (2004) Functional links between telomeres and proteins of the DNA-damage response. Genes Dev 18:1781–1799

    Google Scholar 

  • Davis AP, Symington LS (2004) RAD51-dependent break-induced replication in yeast. Mol Cell Biol 24:2344–2351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Debrauwere H, Loeillet S, Lin W, Lopes J, Nicolas A (2001) Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc Natl Acad Sci USA 98:8263–8269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doe CL, Whitby MC (2004) The involvement of Srs2 in postreplication repair and homologous recombination in fission yeast. Nucleic Acids Res 32:1480–1491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis NA, Groden J, Ye TZ, Straughen J, Lennon DJ, Ciocci S, Proytcheva M, German J (1995) The Bloom’s syndrome gene product is homologous to RecQ helicases. Cell 83:655–666

    CAS  PubMed  Google Scholar 

  • Fabre F, Chan A, Heyer WD, Gangloff S (2002) Alternate pathways involving Sgs1/Top3, Mus81/ Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc Natl Acad Sci USA 99:16887–16892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foury F, Kolodynski J (1983) pif mutation blocks recombination between mitochondrial rho+ and rho-genomes having tandemly arrayed repeat units in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 80:5345–5349

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friedl AA, Liefshitz B, Steinlauf R, Kupiec M (2001) Deletion of the SRS2 gene suppresses elevated recombination and DNA damage sensitivity in rad5 and rad18 mutants of Saccharomyces cerevisiae. Mutat Res 486:137–146

    CAS  PubMed  Google Scholar 

  • Fujikane R, Komori K, Shinagawa H, Ishino Y (2005) Identification of a novel helicase activity unwinding branched DNAs from the hyperthermophilic archaeon, Pyrococcus furiosus. J Biol Chem 280:12351–12358

    CAS  PubMed  Google Scholar 

  • Gangloff S, McDonald JP, Bendixen C, Arthur L, Rothstein R (1994) The yeast type I topoisomerase Top3 interacts with Sgs1, a DNA helicase homolog: a potential eukaryotic reverse gyrase. Mol Cell Biol 14:8391–8398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gangloff S, Soustelle C, Fabre F (2000) Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Nat Genet 25:192–194

    CAS  PubMed  Google Scholar 

  • Garcia PL, Liu Y, Jiricny J, West SC, Janscak P (2004) Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. Embo J 23:2882–2891

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garvik B, Carson M, Hartwell L (1995) Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol Cell Biol 15:6128–6138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaymes TJ, North PS, Brady N, Hickson ID, Mufti GJ, Rassool FV (2002) Increased error-prone non homologous DNA end-joining—a proposed mechanism of chromosomal in-stability in Bloom’s syndrome. Oncogene 21:2525–2533

    CAS  PubMed  Google Scholar 

  • German J (1993) Bloom syndrome: a mendelian prototype of somatic mutational disease. Medicine (Baltimore) 72:393–406

    CAS  Google Scholar 

  • Godthelp BC, Wiegant WW, Waisfisz Q, Medhurst AL, Arwert F, Joenje H, Zdzienicka MZ (2006) Inducibility of nuclear Rad51 foci after DNA damage distinguishes all Fanconi anemia complementation groups from D1/BRCA2. Mutat Res 594:39–48

    CAS  PubMed  Google Scholar 

  • Goldfarb T, Alani E (2005) Distinct roles for the Saccharomyces cerevisiae mismatch repair proteins in heteroduplex rejection, mismatch repair and nonhomologous tail removal. Genetics 169:563–574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golin JE, Esposito MS (1977) Evidence for joint genic control of spontaneous mutation and genetic recombination during mitosis in Saccharomyces. Mol Gen Genet 150:127–135

    CAS  PubMed  Google Scholar 

  • Gray MD, Shen JC, Kamath-Loeb AS, Blank A, Sopher BL, Martin GM, Oshima J, Loeb LA (1997) The Werner syndrome protein is a DNA helicase. Nat Genet 17:100–103

    CAS  PubMed  Google Scholar 

  • Gupta R, Sharma S, Sommers JA, Jin Z, Cantor SB, Brosh RM Jr (2005) Analysis of the DNA substrate specificity of the human BACH1 helicase associated with breast cancer. J Biol Chem 280:25450–25460

    CAS  PubMed  Google Scholar 

  • Guy CP, Bolt EL (2005) Archaeal Hel308 helicase targets replication forks in vivo and in vitro and unwinds lagging strands. Nucleic Acids Res 33:3678–3690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hackett JA, Greider CW (2003) End resection initiates genomic instability in the absence of telomerase. Mol Cell Biol 23:8450–8461

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harmon FG, DiGate RJ, Kowalczykowski SC (1999) RecQ helicase and topoisomerase III comprise a novel DNA strand passage function: a conserved mechanism for control of DNA recombination. Mol Cell 3:611–620

    CAS  PubMed  Google Scholar 

  • Harrington L (2004) Those damaged telomeres! Curr Opin Genet Dev 14:22–28

    CAS  PubMed  Google Scholar 

  • Harris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC (1996) Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol Cell Biol 16:5764–5771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hegde V, Klein H (2000) Requirement for the SRS2 DNA helicase gene in non-homologous end joining in yeast. Nucleic Acids Res 28:2779–2783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heude M, Chanet R, Fabre F (1995) Regulation of the Saccharomyces cerevisiae Srs2 helicase during the mitotic cell cycle, meiosis and after irradiation. Mol Gen Genet 248:59–68

    CAS  PubMed  Google Scholar 

  • Heyer WD, Ehmsen KT, Solinger JA (2003) Holliday junctions in the eukaryotic nucleus: resolution in sight? Trends Biochem Sci 28:548–557

    CAS  PubMed  Google Scholar 

  • Hollingsworth NM, Brill SJ (2004) The Mus81 solution to resolution: generating meiotic crossovers without Holliday junctions. Genes Dev 18:117–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu P, Beresten SF, van Brabant AJ, Ye TZ, Pandolfi PP, Johnson FB, Guarente L, Ellis NA (2001) Evidence for BLM and Topoisomerase IIIalpha interaction in genomic stability. Hum Mol Genet 10:1287–1298

    CAS  PubMed  Google Scholar 

  • Huang S, Li B, Gray MD, Oshima J, Mian IS, Campisi J (1998) The premature ageing syndrome protein, WRN, is a 3’—>5’ exonuclease. Nat Genet 20:114–116

    CAS  PubMed  Google Scholar 

  • Imamura O, Fujita K, Itoh C, Takeda S, Furuichi Y, Matsumoto T (2002) Werner and Bloom helicases are involved in DNA repair in a complementary fashion. Oncogene 21:954–963

    CAS  PubMed  Google Scholar 

  • Ira G, Malkova A, Liberi G, Foiani M, Haber JE (2003) Srs2 and Sgs1-Top3 suppress crossovers during double-strand break repair in yeast. Cell 115:401–411

    CAS  PubMed  Google Scholar 

  • Ivessa AS, Lenzmeier BA, Bessler JB, Goudsouzian LK, Schnakenberg SL, Zakian VA (2003) The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past non-histone protein-DNA complexes. Mol Cell 12:1525–1536

    CAS  PubMed  Google Scholar 

  • Ivessa AS, Zhou JQ, Schulz VP, Monson EK, Zakian VA (2002) Saccharomyces Rrm3p, a 5’ to 3’ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev 16:1383–1396

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivessa AS, Zhou JQ, Zakian VA (2000) The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100:479–489

    CAS  PubMed  Google Scholar 

  • Kaliraman V, Mullen JR, Fricke WM, Bastin-Shanower SA, Brill SJ (2001) Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease. Genes Dev 15:2730–2740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karow JK, Chakraverty RK, Hickson ID (1997) The Bloom’s syndrome gene product is a 3’–5’ DNA helicase. J Biol Chem 272:30611–30614

    CAS  PubMed  Google Scholar 

  • Karow JK, Constantinou A, Li JL, West SC, Hickson ID (2000) The Bloom’s syndrome gene product promotes branch migration of holliday junctions. Proc Natl Acad Sci USA 97:6504–6508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kass-Eisler A, Greider CW (2000) Recombination in telomere-length maintenance. Trends Biochem Sci 25:200–204

    CAS  PubMed  Google Scholar 

  • Kaytor MD, Nguyen M, Livingston DM (1995) The complexity of the interaction between RAD52 and SRS2. Genetics 140:1441–1442

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keil RL, McWilliams AD (1993) A gene with specific and global effects on recombination of sequences from tandemly repeated genes in Saccharomyces cerevisiae. Genetics 135:711–718

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim J, Kim JH, Lee SH, Kim DH, Kang HY, Bae SH, Pan ZQ, Seo YS (2002) The novel human DNA helicase hFBH1 is an F-box protein. J Biol Chem 277:24530–24537

    CAS  PubMed  Google Scholar 

  • Kim JH, Kim J, Kim DH, Ryu GH, Bae SH, Seo YS (2004) SCFhFBH1 can act as helicase and E3 ubiquitin ligase. Nucleic Acids Res 32:2287–2297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitao S, Ohsugi I, Ichikawa K, Goto M, Furuichi Y, Shimamoto A (1998) Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54:443–452

    CAS  PubMed  Google Scholar 

  • Klein HL (2001) Mutations in recombinational repair and in checkpoint control genes suppress the lethal combination of srs2Delta with other DNA repair genes in Saccharomyces cerevisiae. Genetics 157:557–565

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komori K, Fujikane R, Shinagawa H, Ishino Y (2002) Novel endonuclease in Archaea cleaving DNA with various branched structure. Genes Genet Syst 77:227–241

    CAS  PubMed  Google Scholar 

  • Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y (2004) Cooperation of the N-terminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks. J Biol Chem 279:53175–53185

    CAS  PubMed  Google Scholar 

  • Kraus E, Leung WY, Haber JE (2001) Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci USA 98:8255–8262

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krejci L, Macris M, Li Y, Van Komen S, Villemain J, Ellenberger T, Klein H, Sung P (2004) Role of ATP hydrolysis in the antirecombinase function of Saccharomyces cerevisiae Srs2 protein. J Biol Chem 279:23193–23199

    CAS  PubMed  Google Scholar 

  • Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P (2003) DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423:305–309

    CAS  PubMed  Google Scholar 

  • Kuusk S, Sedman T, Joers P, Sedman J (2005) Hmi1p from Saccharomyces cerevisiae mitochondria is a structure-specific DNA helicase. J Biol Chem 280:24322–24329

    CAS  PubMed  Google Scholar 

  • Lahaye A, Stahl H, Thines-Sempoux D, Foury F (1991) PIF1: a DNA helicase in yeast mitochondria. Embo J 10:997–1007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langston LD, Symington LS (2005) Opposing roles for DNA structure-specific proteins Rad1, Msh2, Msh3, and Sgs1 in yeast gene targeting. Embo J 24:2214–2223

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lawrence CW, Christensen RB (1979) Metabolic suppressors of trimethoprim and ultraviolet light sensitivities of Saccharomyces cerevisiae rad6 mutants. J Bacteriol 139:866–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee BS, Bi L, Garfinkel DJ, Bailis AM (2000) Nucleotide excision repair/TFIIH helicases RAD3 and SSL2 inhibit short-sequence recombination and Ty1 retrotransposition by similar mechanisms. Mol Cell Biol 20:2436–2445

    CAS  PubMed Central  PubMed  Google Scholar 

  • LeRoy G, Carroll R, Kyin S, Seki M, Cole MD (2005) Identification of RecQL1 as a Holliday junction processing enzyme in human cell lines. Nucleic Acids Res 33:6251–6257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levitus M, Waisfisz Q, Godthelp BC, de Vries Y, Hussain S, Wiegant WW, Elghalbzouri-Maghrani E, Steltenpool J, Rooimans MA, Pals G, Arwert F, Mathew CG, Zdzienicka MZ, Hiom K, De Winter JP, Joenje H (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet 37:934–935

    CAS  PubMed  Google Scholar 

  • Levran O, Attwooll C, Henry RT, Milton KL, Neveling K, Rio P, Batish SD, Kalb R, Velleuer E, Barral S, Ott J, Petrini J, Schindler D, Hanenberg H, Auerbach AD (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37:931–933

    CAS  PubMed  Google Scholar 

  • Lewis LK, Westmoreland JW, Resnick MA (1999) Repair of endonuclease-induced double-strand breaks in Saccharomyces cerevisiae: essential role for genes associated with nonhomologous end-joining. Genetics 152:1513–1529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19:339–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liefshitz B, Steinlauf R, Friedl A, Eckardt-Schupp F, Kupiec M (1998) Genetic interactions between mutants of the ‘error-prone’ repair group of Saccharomyces cerevisiae and their effect on recombination and mutagenesis. Mutat Res 407:135–145

    CAS  PubMed  Google Scholar 

  • Litman R, Peng M, Jin Z, Zhang F, Zhang J, Powell S, Andreassen PR, Cantor SB (2005) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8:255–265

    CAS  PubMed  Google Scholar 

  • Lundblad V, Blackburn EH (1993) An alternative pathway for yeast telomere maintenance rescues est1-senescence. Cell 73:347–360

    CAS  PubMed  Google Scholar 

  • Machwe A, Xiao L, Groden J, Matson SW, Orren DK (2005) RecQ family members combine strand pairing and unwinding activities to catalyze strand exchange. J Biol Chem 280:23397–23407

    CAS  PubMed  Google Scholar 

  • Maines S, Negritto MC, Wu X, Manthey GM, Bailis AM (1998) Novel mutations in the RAD3 and SSL1 genes perturb genome stability by stimulating recombination between short repeats in Saccharomyces cerevisiae. Genetics 150:963–976

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malkova A, Ivanov EL, Haber JE (1996) Double-strand break repair in the absence of RAD51 in yeast: a possible role for break-induced DNA replication. Proc Natl Acad Sci USA 93:7131–7136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malone RE, Hoekstra MF (1984) Relationships between a hyperrec mutation (REM1) and other recombination and repair genes in yeast. Genetics 107:33–48

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mankouri HW, Craig TJ, Morgan A (2002) SGS1 is a multicopy suppressor of srs2: functional overlap between DNA helicases. Nucleic Acids Res 30:1103–1113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mankouri HW, Hickson ID (2004) Understanding the roles of RecQ helicases in the maintenance of genome integrity and suppression of tumorigenesis. Biochem Soc Trans 32:957–958

    CAS  PubMed  Google Scholar 

  • Marini F, Wood RD (2002) A human DNA helicase homologous to the DNA cross-link sensitivity protein Mus308. J Biol Chem 277:8716–8723

    CAS  PubMed  Google Scholar 

  • Maser RS, DePinho RA (2004) Telomeres and the DNA damage response: why the fox is guarding the henhouse. DNA Repair (Amst) 3:979–988

    CAS  Google Scholar 

  • Mazina OM, Mazin AV, Nakagawa T, Kolodner RD, Kowalczykowski SC (2004) Saccharomyces cerevisiae Mer3 helicase stimulates 3’–5’ heteroduplex extension by Rad51; implications for crossover control in meiotic recombination. Cell 117:47–56

    CAS  PubMed  Google Scholar 

  • McVey M, Larocque JR, Adams MD, Sekelsky JJ (2004) Formation of deletions during double-strand break repair in Drosophila DmBlm mutants occurs after strand invasion. Proc Natl Acad Sci USA 101:15694–15699

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, Bier P, Steltenpool J, Stone S, Dokal I, Mathew CG, Hoatlin M, Joenje H, de Winter JP, Wang W (2005) A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat Genet 37:958–963

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mercier R, Jolivet S, Vezon D, Huppe E, Chelysheva L, Giovanni M, Nogue F, Doutriaux MP, Horlow C, Grelon M, Mezard C (2005) Two meiotic crossover classes cohabit in Arabidopsis: one is dependent on MER3, whereas the other one is not. Curr Biol 15:692–701

    CAS  PubMed  Google Scholar 

  • Milne GT, Ho T, Weaver DT (1995) Modulation of Saccharomyces cerevisiae DNA double-strand break repair by SRS2 and RAD51. Genetics 139:1189–1199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyajima A, Seki M, Onoda F, Shiratori M, Odagiri N, Ohta K, Kikuchi Y, Ohno Y, Enomoto T (2000) Sgs1 helicase activity is required for mitotic but apparently not for meiotic functions. Mol Cell Biol 20:6399–6409

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moens PB, Freire R, Tarsounas M, Spyropoulos B, Jackson SP (2000) Expression and nuclear localization of BLM, a chromosome stability protein mutated in Bloom’s syndrome, suggest a role in recombination during meiotic prophase. J Cell Sci 113:663–672

    CAS  PubMed  Google Scholar 

  • Moens PB, Kolas NK, Tarsounas M, Marcon E, Cohen PE, Spyropoulos B (2002) The time course and chromosomal localization of recombination-related proteins at meiosis in the mouse are compatible with models that can resolve the early DNA-DNA interactions without reciprocal recombination. J Cell Sci 115:1611–1622

    CAS  PubMed  Google Scholar 

  • Mohaghegh P, Karow JK, Brosh RM Jr, Bohr VA, Hickson ID (2001) The Bloom’s and Werner’s syndrome proteins are DNA structure-specific helicases. Nucleic Acids Res 29:2843–2849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monroe DS Jr, Leitzel AK, Klein HL, Matson SW (2005) Biochemical and genetic characterization of Hmi1p, a yeast DNA helicase involved in the maintenance of mitochondrial DNA. Yeast 22:1269–1286

    CAS  PubMed  Google Scholar 

  • Montelone BA, Hoekstra MF, Malone RE (1988) Spontaneous mitotic recombination in yeast: the hyper-recombinational rem1 mutations are alleles of the RAD3 gene. Genetics 119:289–301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Montelone BA, Malone RE (1994) Analysis of the rad3-101 and rad3-102 mutations of Saccharomyces cerevisiae: implications for structure/function of Rad3 protein. Yeast 10:13–27

    CAS  PubMed  Google Scholar 

  • Morishita T, Furukawa F, Sakaguchi C, Toda T, Carr AM, Iwasaki H, Shinagawa H (2005) Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates. Mol Cell Biol 25:8074–8083

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow DM, Connelly C, Hieter P (1997) “Break copy” duplication: a model for chromosome fragment formation in Saccharomyces cerevisiae. Genetics 147:371–382

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosedale G, Niedzwiedz W, Alpi A, Perrina F, Pereira-Leal JB, Johnson M, Langevin F, Pace P, Patel KJ (2005) The vertebrate Hef ortholog is a component of the Fanconi anemia tumorsuppressor pathway. Nat Struct Mol Biol 12:763–771

    CAS  PubMed  Google Scholar 

  • Mullen JR, Kaliraman V, Brill SJ (2000) Bipartite structure of the SGS1 DNA helicase in Saccharomyces cerevisiae. Genetics 154:1101–1114

    CAS  PubMed Central  PubMed  Google Scholar 

  • Myung K, Datta A, Chen C, Kolodner RD (2001) SGS1, the Saccharomyces cerevisiae homologue of BLM and WRN, suppresses genome instability and homeologous recombination. Nat Genet 27:113–116

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Flores-Rozas H, Kolodner RD (2001) The MER3 helicase involved in meiotic crossing over is stimulated by single-stranded DNA-binding proteins and unwinds DNA in the 3’ to 5’ direction. J Biol Chem 276:31487–31493

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Kolodner RD (2002a) The MER3 DNA helicase catalyzes the unwinding of holliday junctions. J Biol Chem 277:28019–28024

    CAS  PubMed  Google Scholar 

  • Nakagawa T, Kolodner RD (2002b) Saccharomyces cerevisiae Mer3 is a DNA helicase involved in meiotic crossing over. Mol Cell Biol 22:3281–3291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Ogawa H (1999) The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. Embo J 18:5714–5723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neff NF, Ellis NA, Ye TZ, Noonan J, Huang K, Sanz M, Proytcheva M (1999) The DNA helicase activity of BLM is necessary for the correction of the genomic instability of bloom syndrome cells. Mol Biol Cell 10:665–676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K (2005) Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Structure (Camb) 13:143–153

    CAS  Google Scholar 

  • Onoda F, Seki M, Miyajima A, Enomoto T (2000) Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom’s syndrome gene. Mutat Res 459:203–209

    CAS  PubMed  Google Scholar 

  • Ooi SL, Shoemaker DD, Boeke JD (2003) DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat Genet 35:277–286

    CAS  PubMed  Google Scholar 

  • Orren DK, Theodore S, Machwe A (2002) The Werner syndrome helicase/exonuclease (WRN) disrupts and degrades D-loops in vitro. Biochemistry 41:13483–13488

    CAS  PubMed  Google Scholar 

  • Osman F, Dixon J, Barr AR, Whitby MC (2005) The F-Box DNA helicase Fbh1 prevents Rhp51-dependent recombination without mediator proteins. Mol Cell Biol 25:8084–8096

    CAS  PubMed Central  PubMed  Google Scholar 

  • Osman F, Dixon J, Doe CL, Whitby MC (2003) Generating crossovers by resolution of nicked Holliday junctions: a role for Mus81-Eme1 in meiosis. Mol Cell 12:761–774

    CAS  PubMed  Google Scholar 

  • Paffett KS, Clikeman JA, Palmer S, Nickoloff JA (2005) Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths. DNA Repair (Amst) 4:687–698

    CAS  Google Scholar 

  • Palladino F, Klein HL (1992) Analysis of mitotic and meiotic defects in Saccharomyces cerevisiae SRS2 DNA helicase mutants. Genetics 132:23–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133

    CAS  PubMed  Google Scholar 

  • Paques F, Haber JE (1997) Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol Cell Biol 17:6765–6771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park JS, Choi E, Lee SH, Lee C, Seo YS (1997) A DNA helicase from Schizosaccharomyces pombe stimulated by single-stranded DNA-binding protein at low ATP concentration. J Biol Chem 272:18910–18919

    CAS  PubMed  Google Scholar 

  • Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433

    CAS  PubMed  Google Scholar 

  • Pichierri P, Franchitto A, Mosesso P, Palitti F (2001) Werner’s syndrome protein is required for correct recovery after replication arrest and DNA damage induced in S-phase of cell cycle. Mol Biol Cell 12:2412–2421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prakash R, Krejci L, Van Komen S, Anke Schurer K, Kramer W, Sung P (2005) Saccharomyces cerevisiae MPH1 gene, required for homologous recombination-mediated mutation avoidance, encodes a 3’ to 5’ DNA helicase. J Biol Chem 280:7854–7860

    CAS  PubMed  Google Scholar 

  • Prince PR, Emond MJ, Monnat RJ Jr (2001) Loss of Werner syndrome protein function promotes aberrant mitotic recombination. Genes Dev 15:933–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rassool FV, North PS, Mufti GJ, Hickson ID (2003) Constitutive DNA damage is linked to DNA replication abnormalities in Bloom’s syndrome cells. Oncogene 22:8749–8757

    CAS  PubMed  Google Scholar 

  • Rockmill B, Fung JC, Branda SS, Roeder GS (2003) The Sgs1 helicase regulates chromosome synapsis and meiotic crossing over. Curr Biol 13:1954–1962

    CAS  PubMed  Google Scholar 

  • Rong L, Klein HL (1993) Purification and characterization of the SRS2 DNA helicase of the yeast Saccharomyces cerevisiae. J Biol Chem 268:1252–1259

    CAS  PubMed  Google Scholar 

  • Rong L, Palladino F, Aguilera A, Klein HL (1991) The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene. Genetics 127:75–85

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saintigny Y, Makienko K, Swanson C, Emond MJ, Monnat RJ Jr (2002) Homologous recombination resolution defect in werner syndrome. Mol Cell Biol 22:6971–6978

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scheller J, Schurer A, Rudolph C, Hettwer S, Kramer W (2000) MPH1, a yeast gene encoding a DEAH protein, plays a role in protection of the genome from spontaneous and chemically induced damage. Genetics 155:1069–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schiestl RH, Prakash S, Prakash L (1990) The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124:817–831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schild D (1995) Suppression of a new allele of the yeast RAD52 gene by overexpression of RAD51, mutations in srs2 and ccr4, or mating-type heterozygosity. Genetics 140:115–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt KH, Derry KL, Kolodner RD (2002) Saccharomyces cerevisiae RRM3, a 5’ to 3’ DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem 277:45331–45337

    CAS  PubMed  Google Scholar 

  • Schmidt KH, Kolodner RD (2004) Requirement of Rrm3 helicase for repair of spontaneous DNA lesions in cells lacking Srs2 or Sgs1 helicase. Mol Cell Biol 24:3213–3226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulz VP, Zakian VA (1994) The Saccharomyces PIF1 DNA helicase inhibits telomere elongation and de novo telomere formation. Cell 76:145–155

    CAS  PubMed  Google Scholar 

  • Schurer KA, Rudolph C, Ulrich HD, Kramer W (2004) Yeast MPH1 gene functions in an error-free DNA damage bypass pathway that requires genes from homologous recombination, but not from postreplicative repair. Genetics 166:1673–1686

    PubMed Central  PubMed  Google Scholar 

  • Sedman T, Joers P, Kuusk S, Sedman J (2005) Helicase Hmi1 stimulates the synthesis of concatemeric mitochondrial DNA molecules in yeast Saccharomyces cerevisiae. Curr Genet 47:213–222

    CAS  PubMed  Google Scholar 

  • Sedman T, Kuusk S, Kivi S, Sedman J (2000) A DNA helicase required for maintenance of the functional mitochondrial genome in Saccharomyces cerevisiae. Mol Cell Biol 20:1816–1824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma S, Sommers JA, Choudhary S, Faulkner JK, Cui S, Andreoli L, Muzzolini L, Vindigni A, Brosh RM Jr (2005) Biochemical analysis of the DNA unwinding and strand annealing activities catalyzed by human RECQ1. J Biol Chem 280:28072–28084

    CAS  PubMed  Google Scholar 

  • Shen JC, Gray MD, Oshima J, Loeb LA (1998) Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res 26:2879–2885

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimamoto A, Nishikawa K, Kitao S, Furuichi Y (2000) Human RecQ5beta, a large isomer of RecQ5 DNA helicase, localizes in the nucleoplasm and interacts with topoisomerases 3alpha and 3beta. Nucleic Acids Res 28:1647–1655

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shor E, Gangloff S, Wagner M, Weinstein J, Price G, Rothstein R (2002) Mutations in ho-mologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae. Genetics 162:647–662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart E, Chapman CR, Al-Khodairy F, Carr AM, Enoch T (1997) rqh1+, a fission yeast gene related to the Bloom’s and Werner’s syndrome genes, is required for reversible S phase arrest. Embo J 16:2682–2692

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugawara N, Goldfarb T, Studamire B, Alani E, Haber JE (2004) Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc Natl Acad Sci USA 101:9315–9320

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sung P, Prakash L, Matson SW, Prakash S (1987) RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc Natl Acad Sci USA 84:8951–8955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suzuki K, Kato A, Sakuraba Y, Inoue H (2005) Srs2 and RecQ homologs cooperate in mei-3-mediated homologous recombination repair of Neurospora crassa. Nucleic Acids Res 33:1848–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Swanson C, Saintigny Y, Emond MJ, Monnat RJ, Jr (2004) The Werner syndrome protein has separable recombination and survival functions. DNA Repair (Amst) 3:475–482

    CAS  Google Scholar 

  • Tarsounas M, West SC (2005) Recombination at mammalian telomeres: an alternative mechanism for telomere protection and elongation. Cell Cycle 4:672–674

    CAS  PubMed  Google Scholar 

  • Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C (2004) Global mapping of the yeast genetic interaction network. Science 303:808–813

    CAS  PubMed  Google Scholar 

  • Torres JZ, Bessler JB, Zakian VA (2004a) Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev 18:498–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres JZ, Schnakenberg SL, Zakian VA (2004b) Saccharomyces cerevisiae Rrm3p DNA helicase promotes genome integrity by preventing replication fork stalling: viability of rrm3 cells requires the intra-S-phase checkpoint and fork restart activities. Mol Cell Biol 24:3198–3212

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ui A, Seki M, Ogiwara H, Onodera R, Fukushige S, Onoda F, Enomoto T (2005) The ability of Sgs1 to interact with DNA topoisomerase III is essential for damage-induced recombination. DNA Repair (Amst) 4:191–201

    CAS  Google Scholar 

  • Ulrich HD (2001) The srs2 suppressor of UV sensitivity acts specifically on the RAD5-and MMS2-dependent branch of the RAD6 pathway. Nucleic Acids Res 29:3487–3494

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Brabant AJ, Ye T, Sanz M, German IJ, Ellis NA, Holloman WK (2000) Binding and melting of D-loops by the Bloom syndrome helicase. Biochemistry 39:14617–14625

    PubMed  Google Scholar 

  • Van Komen S, Reddy MS, Krejci L, Klein H, Sung P (2003) ATPase and DNA helicase activities of the Saccharomyces cerevisiae antirecombinase Srs2. J Biol Chem 278:44331–44337

    PubMed  Google Scholar 

  • Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE (2002) Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol Cell 10:373–385

    CAS  PubMed  Google Scholar 

  • Veaute X, Delmas S, Selva M, Jeusset J, Le Cam E, Matic I, Fabre F, Petit MA (2005) UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli. Embo J 24:180–189

    CAS  PubMed Central  PubMed  Google Scholar 

  • Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F (2003) The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423:309–312

    CAS  PubMed  Google Scholar 

  • Walpita D, Plug AW, Neff NF, German J, Ashley T (1999) Bloom’s syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc Natl Acad Sci USA 96:5622–5627

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang SW, Goodwin A, Hickson ID, Norbury CJ (2001) Involvement of Schizosaccharomyces pombe Srs2 in cellular responses to DNA damage. Nucleic Acids Res 29:2963–2972

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang W, Seki M, Narita Y, Nakagawa T, Yoshimura A, Otsuki M, Kawabe Y, Tada S, Yagi H, Ishii Y, Enomoto T (2003) Functional relation among RecQ family helicases RecQL1, RecQL5, and BLM in cell growth and sister chromatid exchange formation. Mol Cell Biol 23:3527–3535

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watt PM, Hickson ID, Borts RH, Louis EJ (1996) SGS1, a homologue of the Bloom’s and Werner’s syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144:935–945

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watt PM, Louis EJ, Borts RH, Hickson ID (1995) Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81:253–260

    CAS  PubMed  Google Scholar 

  • Whitby MC (2005) Making crossovers during meiosis. Biochem Soc Trans 33:1451–1455

    CAS  PubMed  Google Scholar 

  • Wilsonai TE (2002) A genomics-based screen for yeast mutants with an altered recombination/end-joining repair ratio. Genetics 162:677–688

    Google Scholar 

  • Wu L, Davies SL, Levitt NC, Hickson ID (2001) Potential role for the BLM helicase in recombinational repair via a conserved interaction with RAD51. J Biol Chem 276:19375–19381

    CAS  PubMed  Google Scholar 

  • Wu L, Davies SL, North PS, Goulaouic H, Riou JF, Turley H, Gatter KC, Hickson ID (2000) The Bloom’s syndrome gene product interacts with topoisomerase III. J Biol Chem 275:9636–9644

    CAS  PubMed  Google Scholar 

  • Wu L, Hickson ID (2002) RecQ helicases and cellular responses to DNA damage. Mutat Res 509:35–47

    CAS  PubMed  Google Scholar 

  • Wu L, Hickson ID (2003) The Bloom’s syndrome helicase suppresses crossing over during homologous recombination. Nature 426:870–874

    CAS  PubMed  Google Scholar 

  • Yamagata K, Kato J, Shimamoto A, Goto M, Furuichi Y, Ikeda H (1998) Bloom’s and Werner’s syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc Natl Acad Sci USA 95:8733–8738

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu CE, Oshima J, Fu YH, Wijsman EM, Hisama F, Alisch R, Matthews S, Nakura J, Miki T, Ouais S, Martin GM, Mulligan J, Schellenberg GD (1996) Positional cloning of the Werner’s syndrome gene. Science 272:258–262

    CAS  PubMed  Google Scholar 

  • Zhou J, Monson EK, Teng SC, Schulz VP, Zakian VA (2000) Pif1p helicase, a catalytic inhibitor of telomerase in yeast. Science 289:771–774

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klein, H.L. (2007). DNA helicases in recombination. In: Aguilera, A., Rothstein, R. (eds) Molecular Genetics of Recombination. Topics in Current Genetics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71021-9_5

Download citation

Publish with us

Policies and ethics