Advertisement

The Plane-Wave Based Full-Potential ASW Method

  • Volker Eyert
Part of the Lecture Notes in Physics book series (LNP, volume 719)

Keywords

Envelope Function Local Part Multipole Moment Interstitial Region Atomic Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Antonov, P. M. Oppeneer, A. N. Yaresko, A. Y. Perlov, and T. Kraft, Phys. Rev. B 56, 13012 (1997)CrossRefADSGoogle Scholar
  2. 2.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-Saunders, Philadelphia 1976)Google Scholar
  3. 3.
    K. Atkinson, J. Austral. Math. Soc. B 23, 332 (1982)zbMATHCrossRefGoogle Scholar
  4. 4.
    U. von Barth, Density-Functional Theory for Solids. In: The Electronic Structure of Complex Systems, ed by P. Phariseau and W. Temmerman (Plenum Press, New York 1984) pp 67–140Google Scholar
  5. 5.
    U. von Barth, An Overview of Density-Functional Theory. In: Many-Body Phenomena at Surfaces, ed by D. Langreth and H. Suhl (Academic Press, Orlando 1984) pp 3–50Google Scholar
  6. 6.
    Z. P. Bažant and B. H. Oh, Z. Angew. Math. Mech. 66, 37 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    P. E. Blöchl, Gesamtenergien, Kräfte und Metall-Halbleiter Grenzflächen. PhD thesis, Universitäat Stuttgart (1989)Google Scholar
  8. 8.
    N. E. Christensen, Phys. Rev. B 29, 5547 (1984)CrossRefADSGoogle Scholar
  9. 9.
    G. Czycholl, Theoretische Festkörperphysik, (Springer, Berlin 2004)Google Scholar
  10. 10.
    R. M. Dreizler and E. K. U. Gross, Density-Functional Theory (Springer, Berlin 1990)zbMATHGoogle Scholar
  11. 11.
    H. Ebert, Rep. Prog. Phys. 59, 1665 (1996)CrossRefADSGoogle Scholar
  12. 12.
    H. Eschrig, The Fundamentals of Density-Functional Theory (Edition am Gutenbergplatz, Leipzig 2003)zbMATHGoogle Scholar
  13. 13.
    V. Eyert, Entwicklung und Implementation eines Full-Potential-ASW-Verfahrens. PhD thesis, Technische Hochschule Darmstadt (1991)Google Scholar
  14. 14.
    V. Eyert, J. Comput. Phys. 124, 271 (1996)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. 15.
    V. Eyert, Electronic Structure of Crystalline Materials, 2nd edn (University of Augsburg, Augsburg 2005)Google Scholar
  16. 16.
    P. Keast, J. Comput. Appl. Math. 17, 151 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Keast and J. C. Diaz, SIAM J. Numer. Anal. 20, 406 (1983)zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    J. Kübler and V. Eyert, Electronic structure calculations. In: Electronic and Magnetic Properties of Metals and Ceramics, ed by K. H. J. Buschow (VCH Verlagsgesellschaft, Weinheim 1992) pp 1–145; vol 3A of Materials Science and Technology, ed by R. W. Cahn, P. Haasen, and E. J. Kramer (VCH Verlagsgesellschaft, Weinheim 1991–1996)Google Scholar
  19. 19.
    T. Maurer, Berechnung des magneto-optischen Kerr-Effekts. Diploma thesis, Technische Hochschule Darmstadt (1991)Google Scholar
  20. 20.
    A. D. McLaren, Math. Comput. 17, 361 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    M. S. Methfessel, Multipole Green Functions for Electronic Structure Calculations. PhD thesis, University of Nijmegen (1986)Google Scholar
  22. 22.
    I. P. Mysovskih, Sov. Math. Dokl. 18, 925 (1977)Google Scholar
  23. 23.
    P. M. Oppeneer, T. Maurer, J. Sticht, and J. Kübler, Phys. Rev. B 45, 10924 (1992)CrossRefADSGoogle Scholar
  24. 24.
    P. M. Oppeneer, J. Sticht, T. Maurer, and J. Kübler, Z. Phys. B 88, 309 (1992)CrossRefADSGoogle Scholar
  25. 25.
    R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford 1989)Google Scholar
  26. 26.
    A. S. Popov, Comput. Math. Math. Phys. 35, 369 (1995)zbMATHMathSciNetGoogle Scholar
  27. 27.
    H. W. A. M. Rompa, R. Eppenga, and M. F. H. Schuurmans, Physica 145B, 5 (1987)Google Scholar
  28. 28.
    A. H. Stroud, Approximate Calculation of Multiple Integrals (Prentice-Hall, Englewood Cliffs 1971)zbMATHGoogle Scholar
  29. 29.
    A. H. Stroud, SIAM J. Numer. Anal. 10, 559 (1973)zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. 30.
    C. S. Wang and J. Callaway, Phys. Rev. B9, 4897 (1974)ADSGoogle Scholar
  31. 31.
    M. Weinert, J. Math. Phys. 22, 2433 (1981)CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    K.-H. Weyrich, Solid State Commun. 54, 975 (1985)CrossRefADSGoogle Scholar
  33. 33.
    K.-H. Weyrich and R. Siems, Jap. J. Appl. Phys., Suppl. 24, 201 (1985)Google Scholar
  34. 34.
    K.-H. Weyrich and R. Siems, Z. Phys. 61, 63 (1985)CrossRefGoogle Scholar
  35. 35.
    K.-H. Weyrich, Phys. Rev. B 37, 10269 (1988)CrossRefADSGoogle Scholar
  36. 36.
    K.-H. Weyrich, L. Brey, and N. E. Christensen, Phys. Rev. B 38, 1392 (1988)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Volker Eyert
    • 1
  1. 1.Center for Electronic Correlations and Magnetism Institute of PhysicsUniversity of Augsburg86135 AugsburgGermany

Personalised recommendations