Skip to main content

Convexity and convex sets

  • Chapter
  • First Online:
Geometry Revealed
  • 4141 Accesses

Abstract

The history of convexity History of convexity is rather astonishing, even paradoxical, and we explain why. On the one hand, the notion of convexity Convexity is extremely natural, so much so that we find it, for example, in works on artArt and anatomyAnatomy without it being defined. Below are two excerpts, one from a book on art (1985) illustrating a modern sculpture; the other, from a classic anatomy reference (Rouvière), describes the extremely subtle overlapping of menisci in the knee. We also find in the same work a description of the aortic arch, also very complex, which uses the words “concave” and “convex” several times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • [B] Berger, M. (1987, 2009). Geometry I, II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG] Berger, M., & Gostiaux, B. (1987). Differential geometry: Manifolds, curves and surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • (1985). Treasures of the Israel museum Jerusalem. Jerusalem and Genève: Israel Museum and Pierre-Alain Ferrazini

    Google Scholar 

  • Ahoronov, D., Schiffer, M., & Zalcman, L. (1981). Potato Kugel. Israel Journal of Mathematics, 40, 331–339

    MathSciNet  Google Scholar 

  • Alesker, S. (2001). Description of translation invariant valuations on convex sets with solution of McMullen’s conjecture. Geometric and Functional Analysis (GAFA), 11, 244–272

    MATH  MathSciNet  Google Scholar 

  • Andrews, B. (1999). Gauss curvature flow: the fate of rolling stones. Inventiones Mathematicae, 138, 151–161

    MATH  MathSciNet  Google Scholar 

  • Andrews, B. (2002). Positively curved surfaces in three-sphere (Vol.2, pp.221–230). Proceedings of the ICM, Beijing

    Google Scholar 

  • Appell (1952). Traité de mécanique rationnelle. Paris: Gauthier-Villars

    Google Scholar 

  • Appell, P., & Lacour, E. (1922). Fonctions elliptiques. Paris: Gauthier-Villars

    Google Scholar 

  • Arnold, V. (1976). Les méthodes mathématiques de la mécanique classique, Moscow: MIR

    MATH  Google Scholar 

  • Arnold, V. (1978). Mathematical methods of classical mechanics. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Auerbach, H. (1938). Sur un problème de M. Ulam concernant l’équilibre des corps flottants. Studia Mathematica, 7, 121–142

    MATH  Google Scholar 

  • Ball, K. (1986). Cube slicing in \(\mathbb{R}^{n}\). Proceedings of the American Mathematical Society, 97, 465–473

    MATH  MathSciNet  Google Scholar 

  • Ball, K. (1989). Volumes of sections of cubes and related problems. In Geometric aspects of functional analysis: Vol. 1376. Springer lecture notes in mathematics (pp.251–260). Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Ball, K. (1991). Volume ratios and a reverse isoperimetric inequality. Journal of the London Mathematical Society, Second Series, 44, 351–359

    MATH  MathSciNet  Google Scholar 

  • Bandt, C., & Baraki, G. (1986). Metrically invariant measures on locally homogeneous spaces and hyperspaces. Pacific Journal of Mathematics, 121, 13–28

    MATH  MathSciNet  Google Scholar 

  • Barany, I., & Füredi, Z. (1987). Computing the volume is difficult. Discrete & Computational Geometry, 2, 319–326

    MATH  MathSciNet  Google Scholar 

  • Barany, I. (2008). Random points and lattice points, Bulletin of the AMS, 45, 339–366

    MATH  MathSciNet  Google Scholar 

  • Barthe, F. (1998). On a reverse form of Brascamp-Lieb inequality. Inventiones Mathematicae, 134, 335–361

    MathSciNet  Google Scholar 

  • Barthe, F. & Nahor, A. (2002). Hyperplane projections of the unit ball of l(n;p), Discrete and Computational Geometry, 27, 215–228

    MATH  MathSciNet  Google Scholar 

  • Berger, M. (1999). Riemannian geometry during the second half of the twentieth century. Providence, RI: American Mathematical Society

    Google Scholar 

  • Berger, M. (2000). Encounter with a geometer I, II. Notices of the American Mathematical Society, 47(2), 47(3), 183–194, 326–340

    MATH  MathSciNet  Google Scholar 

  • Berger, M. (2003). A panoramic view of Riemannian geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Besicowitch, A. (1945). On the definition and value of the area of a surface. The Quarterly Journal of Mathematics, Oxford, 27, 141–144

    Google Scholar 

  • Bollobas, B. (1997). Volume estimates and rapid mixing in Flavors in Geometry, Silvio Levy (Ed.), MSRI Publications, 31, Cambridge: Cambridge University Press

    Google Scholar 

  • Boltyanski, V., Martini, H., & Soltan, P. (1997). Excursions into combinatorial geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Bombieri, E., & Vaaler, J. (1983). On Siegel’s lemma, plus addendum. Inventiones Mathematicae, 73, 75, 11–32, 377

    MathSciNet  Google Scholar 

  • Bourgain, J. (1991). On the distribution of polynomials on high dimensional convex sets. In L.A. Milman (Ed.), Geometric aspects of functional analysis: Vol.1469. Springer lecture notes in mathematics (pp.127–137). Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Bourgain, J., Klartag B. Milman, V., (2003). A reduction of the slicing problem to finite volume ratio bodies. Comptes Rendus de l’Académie des sciences, 1336, 331–334

    MathSciNet  Google Scholar 

  • Bourgain, J., & Milman, V. (1987). New volume ratio properties for convex symmetric bodies in \(\mathbb{R}^{n}\). Inventiones Mathematicae, 88, 319–340

    MATH  MathSciNet  Google Scholar 

  • Brascamp, H., & Lieb, E. (1976). On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. Journal of Functional Analysis, 22, 366–389

    MATH  MathSciNet  Google Scholar 

  • Brenier, Y. (1991). Polar factorizations and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 44, 375–417

    MATH  MathSciNet  Google Scholar 

  • Brenier, Y. Frisch, U., Hénon, M (2003). Reconstruction of the early Universe as a convex optimization problem. Monthly Notices of the Royal Astronomical Society, 346, 501–524

    Google Scholar 

  • Burago, Y., & Zalgaller, V. (1988). Geometric inequalities. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Busemann, H. (1953). Volumes in terms of concurrent cross-sections. Journal of Mathematics, 3, 1–12

    MATH  MathSciNet  Google Scholar 

  • Busemann, H. (1958). Convex surfaces. New York: Wiley Interscience

    Google Scholar 

  • Chou, K. (1985). Deforming a hypersurface by its Gauss-Kronecker curvature. Communications on Pure and Applied Mathematics, 38, 867–882

    MathSciNet  Google Scholar 

  • Claude J., & Davanture C. (1988). Les roulements. Paris: SNR Roulements and Nathan Communications

    Google Scholar 

  • Croft, H., Falconer, K., & Guy, R. (1991). Unsolved problems in geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Daskadopoulos, P., & Lee, K.-A. (2004). Worn stones with flat sides all time regularity of the interface. Inventiones Mathematicae, 156, 445–493

    MathSciNet  Google Scholar 

  • David, G., & Semmes, S. (1997). Fractured fractals and broken dreams. Oxford: Clarendon Press

    Google Scholar 

  • Dvoretsky, A. (1961). Some results on convex bodies and Banach spaces (pp.123–160). Proceedings of the international symposium on Linear Spaces, July 1960, Jerusalem

    Google Scholar 

  • Dvoretsky, A., & Rogers, C. (1950). Absolute and unconditional convergence in normed linear spaces. Proceedings of the National Academy of Sciences of the USA, 36, 192–197

    Google Scholar 

  • Eggleston, H. (1958). Convexity. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Ehrhart, E. (1966). Sections maximales du cube. Revue de mathématiques spéciales, 76(10), 249–251

    Google Scholar 

  • Falconer, K. (1983). Applications of results on spherical integration to the theory of convex sets. The American Mathematical Monthly, 90, 690–693

    MATH  MathSciNet  Google Scholar 

  • Falconer, K. (1990). Fractal geometry. New York: John Wiley

    Google Scholar 

  • Feder, J. (1988). Fractals. New York: Plenum Press

    Google Scholar 

  • Figiel, T., Lindenstrauss, J., & Milman, V. (1977). The dimension of almost spherical sections of convex bodies. Acta Mathematica, 139, 53–94

    MATH  MathSciNet  Google Scholar 

  • Firey, W. (1974). On the shapes of worn stones. Mathematika, 21, 1–11

    MATH  MathSciNet  Google Scholar 

  • Funk, P. (1913). über Flächen mit lauter gescholssenen geodätischen Linien. Mathematische Annalen, 74, 278–300

    MATH  MathSciNet  Google Scholar 

  • Gardner, R. (1994). A positive answer to the Busemann-Petty problem in three dimensions. Annals of Mathematics, 140, 435–447

    MATH  MathSciNet  Google Scholar 

  • Gardner, R. (1995). Geometric tomography. New York: Cambridge University Press

    Google Scholar 

  • Gardner, R., Koldobsky, A., & Schlumprecht, S. (1999). An analytical solution to the Busemann-Petty problem on sections of convex bodies. Annals of Mathematics, 149, 691–703

    MATH  MathSciNet  Google Scholar 

  • Gardner, R., & McMullen, P. (1980). On Hammer’s X-ray problem. Journal of the London Mathematical Society, Second Series, 2, 171–175

    MathSciNet  Google Scholar 

  • Giannopoulos, A., & Milman, V. (2001). Euclidean structure in finite dimensional normed spaces. In W. Johnson & J. Lindenstrauss (Eds.), Handbook of geometry of Banach spaces (pp.707–779). New York: Kluwer

    Google Scholar 

  • Giannopoulos, A., & Milman, V. (2004). Asymptotic convex geometry, short overview. In S. Donaldson & M. Gromov (Eds.), Different faces of geometry (pp.87–162). New York: Kluwer

    Google Scholar 

  • Gilbert, E. (1991). How things float. The American Mathematical Monthly, 98, 201–216

    MATH  MathSciNet  Google Scholar 

  • Giles, J. (1982). Convex analysis with application in the differentiation of convex functions. London: Pitman

    Google Scholar 

  • Gluskin, E. (1981). The diameter of the Minkowski compactum is approximately equal to n. Functional Analysis and its Applications, 15, 72–73

    MathSciNet  Google Scholar 

  • Gray, A. (1990). Tubes. Reading, MA: Addison-Wesley

    Google Scholar 

  • Gray, A. (1993). Modern differential geometry of curves and surfaces. Boca Raton, FL: CRC Press

    Google Scholar 

  • Gromov, M. (1999). Metric structures for Riemannian and non-Riemannian spaces. Boston: Birkhäuser

    Google Scholar 

  • Gromov, M. (2000). Spaces and questions. Geometric and Functional Analysis (GAFA), Special Volume, 118–161

    Google Scholar 

  • Gromov, M. (2003). Isoperimetry of waists and concentration maps, GAFA , 13, 178–215

    MATH  MathSciNet  Google Scholar 

  • Gromov, M., & Milman, V. (1987). Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Mathematica, 62, 263–282

    MATH  MathSciNet  Google Scholar 

  • Grothendieck, A. (1956). Sur certaines classes de suites dans les espaces de Banach et le théorème de Dvoretsky-Rogers. Bol. Soc. Mat. Sao-Paulo, 8, 81–110. Reprinted in 1998, Resenhas, 3, 447–477

    MathSciNet  Google Scholar 

  • Gruber, P. (1996). Basic problems and recent progress in convexity theory (pp.22–33). In fourth international conference on Geometry, Academy Athens Thessaloniki

    Google Scholar 

  • Gruber, P. (2007). Convex and discrete geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Gruber, P., & Wills, J. (Eds.). (1993). Handbook of convex geometry. North-Holland: Elsevier

    Google Scholar 

  • Grünbaum, B. (1993). Convex polytopes. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Hadwiger, H. (1957). Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Hadwiger, H. (1972). Gitterperiodische Punktmengen und Isoperimetrie. Monatshefte für Mathematik. 76, 410–418

    MATH  MathSciNet  Google Scholar 

  • Helgason, S. (1980). The Radon transform. Boston: Birkhäuser

    Google Scholar 

  • Hensley, D. (1979). Slicing the cube in \(\mathbb{R}^{n}\) and probability. Proceedings of the American Mathematical Society, 73, 95–100

    MathSciNet  Google Scholar 

  • Hilbert, D., & Cohn-Vossen, S. (1952). Geometry and the imagination. New York: Chelsea

    Google Scholar 

  • Huisken, G. (2000). Evolution equations in geometry, in Mathematics Unlimited: 2000 and Beyond, Engquist & Schmid (Eds.), 2, 593–604, New York: Springer Verlag

    Google Scholar 

  • Israel, R. (1979). Convexity in the theory of lattice gases. Princeton, NJ: Princeton University Press

    Google Scholar 

  • John, F. (1948). Extremum problems with inequalities as a subsidiary condition. In Studies and essays presented to R. Courant on his 60th birthday (pp.187–204). New York: Wiley Interscience

    Google Scholar 

  • Kiselman, C. (1987). Smoothness of vector sums of plane convex sets. Mathematica Scandinavica, 60, 239–252

    MATH  MathSciNet  Google Scholar 

  • Klartag, B. (2005). An isomorphic version of the slicing problem. Journal of Functional Analysis, 218, 372–394

    MATH  MathSciNet  Google Scholar 

  • Klartag, B., & Milman, V. (2003). Isomorphic Steiner symmetrization. Inventiones Mathematicae, 153, 463–485

    MATH  MathSciNet  Google Scholar 

  • Ledoux, M. (2001). The concentration of measure phenomenon, Mathematical Surveys and Monographs, 789, Providence: American Mathematical Society

    MATH  Google Scholar 

  • Leichtweiss, K. (1980). Konvexe Mengen. Berlin: VEB Deutscher Verlag der Wissenschaften and Springer

    Google Scholar 

  • Lévy, P. (1951). Problèmes concrets d’Analyse fonctionnelle. Paris: Gauthier-Villars

    Google Scholar 

  • Lindenstrauss, J., & Milman, V. (1993). The local theory of normed spaces and its applications to convexity. In P. Gruber & J. Wills (Eds.), Handbook of geometric convexity. North-Holland: Elsevier, 1149–1220

    Google Scholar 

  • Lovacz, L. (1990). Geometric algorithms and algorithmic geometry (Vol.1, pp.139–154). In Proceedings of the ICM, Kyoto

    Google Scholar 

  • MacBeath, A. (1951). An extremal property of the hypersphere. Proceedings of the Cambridge Philosophical Society, 47, 245–247

    MATH  MathSciNet  Google Scholar 

  • Maurey, B. (2003). Inégalité de Brunn-Minkowski-Lusternik, et autres inégalités géométriques fonctionnelles. In Séminaire Bourbaki (Vol.2003–2004, pp.95–113), Astérisque 299 (2005, Société mathématique de France)

    Google Scholar 

  • McMullen, P. (1983). Volumes of projections of unit cubes. The Bulletin of the London Mathematical Society, 16, 278–280

    MathSciNet  Google Scholar 

  • Meyer, M., & Pajor, A. (1988). Sections of the unit ball of L(n, p). Journal of Functional Analysis, 80, 109–123

    MATH  MathSciNet  Google Scholar 

  • Meyer, M., & Pajor, A. (1990). On the Blaschke-Santalo inequality. Archiv der Mathematik, 55, 82–93

    MATH  MathSciNet  Google Scholar 

  • Meyer, M., & Reisner, S. (1991). A geometric property of the boundary of symmetric convex bodies and convexity of flotation surfaces. Geometriae Dedicata, 37, 327–337

    MATH  MathSciNet  Google Scholar 

  • Milman, V. (1971). A new proof of the theorem of A. Dvoretsky on sections of convex bodies. Functional Analysis and its Applications, 5, 28–37

    MathSciNet  Google Scholar 

  • Milman, V. (1992). Dvoretzky’s theorem – thirty years later. Geometric and Functional Analysis, 2, 455–479

    MATH  MathSciNet  Google Scholar 

  • Milman, V., & Pajor, A. (1989). Isotropic positions and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space. In J. Lindenstrauss & V. Milman (Eds.), Geometric aspects of functional analysis (pp.64–104). Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Milman, V., & Pajor, A. (1999). Entropy methods on asymptotic convex geometry. Comptes Rendus de l’Académie des sciences, 329, 303–308

    MATH  MathSciNet  Google Scholar 

  • Morgan, F. (2008). Geometric Measure Theory: A Beginner’s Guide (4th ed.). Amsterdam: Academic Press

    Google Scholar 

  • Osserman, R. (1978). The isoperimetric inequality. Bulletin of the American Mathematical Society, 84, 1182–1238

    MATH  MathSciNet  Google Scholar 

  • Osserman, R. (1979). Bonnesen-Fenchel isoperimetric inequalities. The American Mathematical Monthly, 86, 1–29

    MATH  MathSciNet  Google Scholar 

  • Oxtoby, J. (1980). Measure and category. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Pach, J., & Agarwal, P. (1995). Combinatorial geometry. New York: Wiley

    Google Scholar 

  • Palmon, O. (1992). The only convex body with extremal distance from the ball is the simplex. Israel Journal of Mathematics, 80, 337–349

    MATH  MathSciNet  Google Scholar 

  • Panaccione, G. (2003). Sphères qui roulent \(\ldots \) Pour la Science, “La sphère sous toutes ses formes”, octobre–décembre 2003

    Google Scholar 

  • Petty, C. (1983). Ellipsoids. In G.A. Wills (Ed.), Convexity and its applications (pp.264–276). Boston: Birkhäuser

    Google Scholar 

  • Pisier, G. (1989). The volume of convex bodies and Banach space geometry. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Radon, J. (1917). über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl., 69, 262–267

    Google Scholar 

  • Reichel, W. (2009). Characterizations of balls by Riesz-potentials. Annali di Matematica Pura ed Applicata, 188, 235–245

    MATH  MathSciNet  Google Scholar 

  • Roberts, A., & Varberg, D. (1973). Convex functions. New York: Academic Press

    Google Scholar 

  • Rockafellar, R., & Wets, R. (1998). Variational analysis. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Rogers, C. (1976). In D. Larman & C. Rogers (Eds.), Proceedings of the Durham symposium on the Relations Between Infinite-Dimensional and Finite-Dimensional Convexty. The Bulletin of the London Mathematical Society, 8, 1–33

    MATH  MathSciNet  Google Scholar 

  • Rorres, C. (2004). Completing Book II of Archimede’s: On floating bodies. The Mathematical Intelligencer, 26, 32–42

    MATH  MathSciNet  Google Scholar 

  • Rouché, E., & de Comberousse, C. (1912). Traité de géométrie (deux volumes). Paris: Gauthier-Villars

    Google Scholar 

  • Rouvière, A. (1973). Traité d’anatomie. Pairs: Masson

    Google Scholar 

  • Schneider, R. (1993). Convex bodies: The Brunn-Minkowski theory. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Schütt, C. (1997). Floating body, illumination body, and polytopal approximation. Comptes Rendus de l’Académie des sciences, 324, 201–203

    MATH  Google Scholar 

  • Schütt, C., & Werner, E. (1994). Homothetic convex floating bodies. Geometriae Dedicata, 49, 335–348

    MATH  MathSciNet  Google Scholar 

  • Steinitz, E., & Rademacher, H. (1934). Vorlesungen über die Theorie der Polyeder. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Talagrand, M. (1995). Concentration of measure ans isoperimetric inequalities in product spaces. Publications mathm´ atiques de líInstitut des hautes études scientifiques, 81, 73–205

    MATH  MathSciNet  Google Scholar 

  • Tomczak-Jaegermann, N. (1989). Banach–Mazur distance and finite-dimensional operator ideals. London: Pitman

    Google Scholar 

  • Tsolomitis (1996). Quantitative Steiner/Schwarz-type symmetrizations. Geometriae Dedicata, 60, 187–206

    MATH  MathSciNet  Google Scholar 

  • Ulam, S. (1960). A collection of mathematical problems. New York: Wiley Interscience

    Google Scholar 

  • Valentine, F. (1964). Convex sets. New York: McGraw-Hill

    Google Scholar 

  • Wagner, G. (1993). On a new method for constructing good point sets on spheres. Discrete & Computational Geometry, 9, 111–129

    MATH  MathSciNet  Google Scholar 

  • Webb, S. (1996). Slices of the regular simplex. Geometriae Dedicata, 61, 19–28

    MATH  MathSciNet  Google Scholar 

  • Zamfirescu, T. (1995). How to hold a convex body. Geometriae Dedicata, 54, 313–316

    MATH  MathSciNet  Google Scholar 

  • Zamfirescu, T. (2004). On the cut locus in Alexandrov spaces and applications to convex surfaces. Pacific Journal of Mathematics, 217, 375–386

    MATH  MathSciNet  Google Scholar 

  • Ziegler, G. (1995). Lectures on polytopes. Berlin/Heidelberg/New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). Convexity and convex sets. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_7

Download citation

Publish with us

Policies and ethics