Skip to main content

Smooth surfaces

  • Chapter
  • First Online:
Book cover Geometry Revealed
  • 4083 Accesses

Abstract

We will study − contemplate − the next simplest objects after curves, i.e. surfaces. We studied curves essentially in the plane, whereas surfaces appear in the Euclidean three-dimensional space \(\mathbb{E}^3\). However, we will see soon enough the necessity of considering abstract surfaces see Sect. V.XYZ. We didn’t encounter this problem for curves, for the only abstract curves are the line and the circle, and we can always visualize them, with their internal geometry, as situated in the plane. This impossibility of visualizing certain surfaces has already been encountered in Sect. I.7 with regard to the projective plane and in Sect. V.14 with regard to elliptic curves. We will encounter it once more in Sect. VI.4 below with regard to hyperbolic geometry. The word smooth is usual for saying differentiable, having a differential, requiring the existence of a tangent plane at the very least. In another direction there are the polyhedra, that will be treated amply in Chap. VIII.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • [B] Berger, M. (1987, 2009). Geometry I, II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG] Berger, M., & Gostiaux, B. (1987). Differential geometry: Manifolds, curves and surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • (1991) Biographical Dictionary of Mathematicians. New York: Charles Scribner’s Sons

    Google Scholar 

  • Appell, P., & Lacour, E. (1922). Fonctions elliptiques. Paris: Gauthier-Villars

    Google Scholar 

  • Arnold, V. (1978). Mathematical methods of classical mechanics. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Arnold, V. (1983). Singularities of systems of rays. Russian mathematica, 38(2), 83–176

    Google Scholar 

  • Arnold, V.I. (1994). Topological invariants of plane curves and caustics. Providence, RI: American Mathematical Society

    Google Scholar 

  • Audin, M., & Lafontaine, J. (Eds.). (1994). Pseudo-holomorphic curves in symplectic geometry. Boston: Birkhäuser

    Google Scholar 

  • Banchoff, T. (2004) Differential geometry and computer graphics, in Perspectives in Mathematics: anniversary of Oberwolfach 1984, Basel: Birkhäuser

    Google Scholar 

  • Barany, I. (2008) . Random points and lattice points, Bulletin of the AMS, 45, 339–366

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, M. (1993). Encounter with a geometer: Eugenio Calabi. In P. de Bartolomeis, F. Tricerri, & E. Vesentini (Eds.), Conference in honour of Eugenio Calabi, manifolds and geometry (pp. 20–60). Pisa: Cambridge University Press

    Google Scholar 

  • Berger, M. (1994). Géométrie et dynamique sur une surface. Rivista di Matematica della Università di Parma, 3, 3–65

    MATH  Google Scholar 

  • Berger, M. (1998) Riemannian geometry during the second half of the century, Jahresbericht der DMV, 100, 45–208

    MATH  Google Scholar 

  • Berger, M. (1999) Riemannian geometry during the second half of the century, AMS University Lecture Series, 17, Providence: American Mathematical Society

    Google Scholar 

  • Berger, M. (2000). Encounter with a geometer I, II. Notices of the American Mathematical Society, 47(2), 47(3), 183–194, 326–340

    Google Scholar 

  • Berger, M. (2001). Peut-on définir la géométrie aujourd’hui? Results in Mathematics, 40, 37–87

    MATH  MathSciNet  Google Scholar 

  • Berger, M. (2003). A panoramic view of Riemannian geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Berger, M., (2005a). Cinq siècles de mathématiques en France. Paris: ADPF (Association pour la diffusion de la pensée française)

    Google Scholar 

  • Berger, M. (2005b). Dynamiser la géométrie élémentaire: Introduction à des travaux de Richard Schwartz. R.C., Atti della Accademia Nazionale dei Lincei. Classe di, Ser. 25, 127–153

    MATH  Google Scholar 

  • Besse, A. (1978). Manifolds all of whose geodesics are closed. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Bleecker, D. (1996). Volume increasing isometric deformations of convex polyhedra. Journal of Differential Geometry, 43, 505–526

    MATH  MathSciNet  Google Scholar 

  • Bleecker, D. (1997). Isometric deformations of compact hypersurfaces. Geometriae Dedicata, 64, 193–227

    Article  MATH  MathSciNet  Google Scholar 

  • Bliss, G. (1902–1903). The geodesic lines on an anchor ring. Annals of Mathematics, 4, 1–20

    Article  MathSciNet  Google Scholar 

  • Bonnet, O. (1855). Sur quelques propriétés des lignes géodésiques. Comptes Rendus de l’Académie des sciences, 40, 1311–1313

    Google Scholar 

  • Bouasse, G. (1917). Construction, description et emploi des appareils de mesure et d’observation. Paris: Delagrave

    Google Scholar 

  • Boy, W. (1903). Curvatura Integra. Mathematische Annalen, 57, 151–184

    Article  MATH  MathSciNet  Google Scholar 

  • Braunmühl, A.v. (1882). Geodätische Linien und ihre Enveloppen auf dreiaxigen Flächen zweiten Grades. Mathematische Annalen, 20, 557–586

    Article  MathSciNet  Google Scholar 

  • Bruning, J., Cantrell, A., Longhurst, R., Schwalbe, D., & Wagon, S. (2000). Rhapsody in white; a victory of mathematicians. The Mathematical Intelligencer, 23(4), 37–40

    Google Scholar 

  • Burago, Y., & Zalgaller, V. (1988). Geometric inequalities. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Burago, Y., & Zalgaller, V. (Eds.). (1992). Geometry III. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Buser, P. (1992). Geometry and spectra of compact Riemann surfaces. Boston: Birkhäuser

    Google Scholar 

  • Calabi, E., & Hartman, P. (1970). On the smoothness of isometries. Duke Mathematical Journal, 37, 397–401

    Article  MathSciNet  Google Scholar 

  • Cartan, E. (1946–1951). Leçons sur la géométrie des espaces de Riemann (2nd ed.). Paris: Gauthier-Villars

    MATH  Google Scholar 

  • Cayley, A. (1873). On the centro-surface of an ellipsoid. Transactions of the Cambridge Philosophical Society, 12, 319–365

    Google Scholar 

  • Chern, S.-S. (1944). A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Annals of Mathematics, 45, 747–752

    Article  MathSciNet  Google Scholar 

  • Chern, S.S. (1989). Studies in global geometry and analysis. Mathematical Association of America

    Google Scholar 

  • Chern, S.-S., Hartman, P., & Wintner, A. (1954). On isothermic coordinates. Commentarii Mathematici Helvetici, 28, 301–309

    Article  MATH  MathSciNet  Google Scholar 

  • Chern, S.-S., & Lashof, R. (1958). On the total curvature of immersed manifolds. Michigan Mathematical Journal, 5, 5–12

    Article  MATH  MathSciNet  Google Scholar 

  • Ciarlet, P., & Larsonneur, F. (2000). Sur la détermination d’une surface dans \(\mathbb{R}^{3}\) à partir de ses deux formes fondamentales. Comptes Rendus de l’Académie des sciences, 331, 893–897

    Article  MATH  MathSciNet  Google Scholar 

  • Claude, J., & Devanture, C. (1988). Les roulements. Paris: SNR Roulements and Nathan Communications

    Google Scholar 

  • Colding, T., & Minicozzi, W. (1999). Minimal surfaces. New York: Courant Institute of Mathematical Sciences, New York University

    Google Scholar 

  • Colin de Verdière, Y. (1990). Triangulations presque équilatérales des surfaces. Journal of Differential Geometry, 32, 199–207

    MATH  MathSciNet  Google Scholar 

  • Corft, H., Falconer, K. & Guy, R. (1991). Unsolved Problems in Geometry, New York: Springer Verlag

    Google Scholar 

  • Darboux, G. (1887, 1889, 1894, 1896). Leçons sur la théorie générale des surfaces. Paris: Gauthier-Villars

    Google Scholar 

  • Darboux, G. (1972). Leçons sur la théorie générale des surfaces. New York: Chelsea

    Google Scholar 

  • Demazure, M. (1989). Géométrie – Catastrophes et Bifurcations. Paris: Ellipses

    Google Scholar 

  • Demazure, M. (2000). Bifurcations and catastrophes. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Dierkes, U., Hildebrandt, S., Küster, A., & Wohlrab, O. (1992). Minimal surfaces I and II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Do Carmo, M. (1976). Differential geometry of curves and surfaces. Englewood Cliffs, NJ, Prentice-Hall

    Google Scholar 

  • Dombrowski, P. (1979). 150 years after Gauss. Paris: Société Mathématique de France

    Google Scholar 

  • Fuchs, D., & Tabachnikov, S. (1995). More on paperfolding. The American Mathematical Monthly, 106, 27–35

    Article  MathSciNet  Google Scholar 

  • Gardner, R. (1995). Geometric tomography. Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Gauld, D. (1982). Differential topology. New York: Marcel Dekker

    Google Scholar 

  • Gluck, H. (1972). The generalized Minkowski problem in differential geometry in the large. Annals of Mathematics, 96, 245–276

    Article  MathSciNet  Google Scholar 

  • Gramain, A. (1971). Topologie des surfaces. Paris: Presses Universitaires de France

    Google Scholar 

  • Gray, A. (1993). Modern differential geometry of curves and surfaces. Boca Raton, FL: CRC Press

    Google Scholar 

  • Gromov, M. (1980). Paul Levy’s isoperimetric inequality. Prepublication M/80/320, Institut des Hautes études Scientifiques. Reprinted as Appendix C of Gromov (1999)

    Google Scholar 

  • Gromov, M. (1985). Pseudo-holomorphic curves in symplectic manifolds. Inventiones Mathematicae, 82, 307–347

    Article  MATH  MathSciNet  Google Scholar 

  • Gromov, M. (1986). Partial differential relations. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Gromov, M. (1999). Metric structures for Riemannian and non-Riemannian manifolds. Boston: Birkhäuser

    Google Scholar 

  • Grosse, K. (1997). Gyroids of constant mean curvature. Experimental Mathematics, 6, 33–50

    MATH  MathSciNet  Google Scholar 

  • Grosse-Brauckmann, K., & Polthier, K. (1997). Constant mean curvature surfaces with low genus. Experimental Mathematics, 6, 32–50

    MathSciNet  Google Scholar 

  • Guan, P., & Li, Y. (1994). The Weyl problem with nonnegative Gauss curvature. Journal of Differential Geometry, 39, 331–342

    MATH  MathSciNet  Google Scholar 

  • Gutierrez, C., & Sotomayor, T. (1992). Lines of curvature and umbilical points on surfaces. Rio de Janeiro: IMPA

    Google Scholar 

  • Hadamard, J. (1897). Sur certaines propriétés des trajectoires en dynamique. Journal de Mathématiques, 5, 331–387

    Google Scholar 

  • Hadamard, J. (1898). Les surfaces à courbure opposées et leurs lignes géodésiques. Journal de Mathématiques Pures et Appliquée, 4, 27–73

    Google Scholar 

  • Hartman, P., & Nirenberg, L. (1959). On spherical images whose Jacobians do not change sign. American Journal of Mathematics, 81, 901–920

    Article  MATH  MathSciNet  Google Scholar 

  • Hauchecorne, B., & Suratteau, D. (1996). Des mathématiciens de A à Z. Paris: Ellipses

    Google Scholar 

  • Hebda, J. (1994). Metric structure of cut-loci in surfaces and Ambrose’s problem. Journal of Differential Geometry, 40, 621–642

    MATH  MathSciNet  Google Scholar 

  • Hilbert, D. (1901). Flächen von konstanter Gauss’schen Krümmung. Transactions of the American Mathematical Society, 2, 87–99

    MATH  MathSciNet  Google Scholar 

  • Hilbert, D., & Cohn-Vossen, S. (1952). Geometry and the imagination. New York: Chelsea

    Google Scholar 

  • Hilbert, D., & Cohn-Vossen, S. (1996). Anschauliche geometrie. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Hirsch, M. (1976). Differential topology. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Hopf, H. (1926). Vektorfelden in n-dimensionalen Mannigfaltigkeiten. Mathematische Annalen, 96, 225–250

    Article  MATH  MathSciNet  Google Scholar 

  • Hopf, H. (1951). Über Flächen mit einer Relation zwischen den Hauptkrümmungen. Mathematische Nachrichten, 4, 232–249

    MATH  MathSciNet  Google Scholar 

  • Hopf, H. (1983). Differential geometry in the large. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Hopf, H., & Rinow, W. (1931). Über den Begriff der vollständigen differentialgeometrischen Flächen. Commentarii Mathematici Helvetici, 3, 209–225

    Article  MATH  MathSciNet  Google Scholar 

  • Itoh, J. & Kiyohara, K. (2004). The cut loci and the conjugate loci on ellipsoids, Manuscripta Math. 114 (2)

    Google Scholar 

  • Joets, A., & Ribotta, R. (1999). Caustique de la surface ellipsoïdale à trois dimensions. Experimental Mathematics, 8, 57–62

    MathSciNet  Google Scholar 

  • Kapouleas, N. (1995). Constant mean curvature surfaces constructed by fusing Wente tori. Inventiones Mathematicae, 119, 443–518

    Article  MATH  MathSciNet  Google Scholar 

  • Karcher, H., & Pinkall, U. (1997). Die Boysche Fläche in Oberwolfach. Mitteilungen der Deutschen Math.-verein (DMV), 1997, 45–47

    MATH  Google Scholar 

  • Kilian, M., McIntosh, I., & Schmitt, N. (2000). New constant mean curvature surfaces. Experimental Mathematics, 9, 565–612

    MathSciNet  Google Scholar 

  • Killing, W. (1885). Die Nicht-euklidischen Raumformen in Analytischer Behandlung. Leipzig: Teubner

    Google Scholar 

  • Klingenberg, W. (1973). Eine Vorlesung über Differentialgeometrie. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Klingenberg, W. (1995). Riemannian geometry (2nd ed.). Berlin: de Gruyter

    MATH  Google Scholar 

  • Klotz-Milnor, T. (1972). Efimov’s theorem about complete immersed surfaces of negative curvature. Advances in Mathematics, 8, 474–543

    Article  MATH  MathSciNet  Google Scholar 

  • Klotz, T. (1959). On G. Bol’s proof of Caratheodory conjecture. Communications on Pure and Applied Mathematics, XII, 277–311

    Article  MathSciNet  Google Scholar 

  • Kobayashi, S., & Nomizu, K. (1963–1969). Foundations of differential geometry I, II. New York: Wiley Interscience

    Google Scholar 

  • Koenderink, J. (1993). Solid shape. Cambridge, MA: MIT Press

    Google Scholar 

  • Labourie, F. (1989). Immersions isométriques elliptiques et courbes pseudo-holomorphes. Journal of Differential Geometry, 30, 393–424

    MathSciNet  Google Scholar 

  • Lazard-Holly, H., & Meeks, W. (2001). Classification of doubly-periodic minimal surfaces. Inventiones Mathematicae, 143, 1–27

    Article  MATH  MathSciNet  Google Scholar 

  • Martinez-Maure, Y. (2000). Contre-exemple à une caractérisation conjecturée de la sphère. Comptes Rendus de l’Académie des sciences I, 332(2001), 41–44

    MathSciNet  Google Scholar 

  • Maskit, B. (1988). Kleinean groups. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Massey, S. (1991). A basic course in algebraic topology. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Mazzeo, R., Pacard, F., & Pollack, D. (2000). Connected sums of constant mean curvature surfaces in Euclidean 3 space. Journal für die Reine und Angewandte Mathematik, 536, 115–165

    MathSciNet  Google Scholar 

  • Moise, E. (1977). Geometric topology in dimensions 2 and 3. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Montiel, S., & Ros, A. (1997). Curvas y superficies. Granada: Proyecto Sur de Ediciones

    Google Scholar 

  • Morgan, F. (1988–2008). Geometric measure theory: A Beginner’s guide (4th ed.). San Diego: Academic Press

    MATH  Google Scholar 

  • Morgan, F. (1993). Riemannian geometry: A Beginnner’s guide. Boston, MA: Jones and Bartlett.

    Google Scholar 

  • Morgan, F. (November, 2000) Double bubble no more trouble. Math Horizons, 2, 30–31

    Google Scholar 

  • Myers, S. (1935a). Riemannian manifolds in the large. Duke Mathematical Journal, 1, 39–49

    Article  MATH  MathSciNet  Google Scholar 

  • Myers, S. (1935b). Connections between differential geometry and toplogy, I. Duke Mathematical Journal, 35, 376–391

    Article  Google Scholar 

  • Myers, S. (1936). Connections between differential geometry and topology, II. Duke Mathematical Journal, 2, 95–102

    Article  Google Scholar 

  • Nadirashvili, N. (1996). Hadamard’s and Calabi-Yau’s conjectures on negatively curved and minimal surfaces. Inventiones Mathematicae, 126, 457–466

    Article  MATH  MathSciNet  Google Scholar 

  • Nitsche, J. (1996). Minimal surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Osserman, R. (1996). Geometry V: Minimal surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Petitot, J., & Tondut, Y. (1999). Vers une neuro-géométrie. Fibrations corticales, structures de contact et contours subjectifs modaux. Mathématiques Informatique et Sciences humaines, 145, 5–101, Paris: EHSS

    Google Scholar 

  • Pinkall, U., & Sterling, I. (1989). On the classification of constant mean curvature tori. Annals of Mathematics, 130, 407–451

    Article  MathSciNet  Google Scholar 

  • Poincaré, H. (1905). Sur les lignes géodésiques des surfaces convexes. Transactions of the American Mathematical Society, 6, 237–274

    Article  MATH  MathSciNet  Google Scholar 

  • Porteous, I. (1994). Geometric differentiation (for the intelligence of curves and surfaces). Cambridge, UK: Cambridge University Press

    Google Scholar 

  • Ros, A. (1999). The Willmore conjecture in the real projective space. Mathematical Research Letters, 6, 487–493

    MATH  MathSciNet  Google Scholar 

  • Scherbel, H. (1993) A new proof of Hamburger’s index theorem on umbilical points. Zürich: ETH

    Google Scholar 

  • Seifert-Threlfall (1980). A textbook of topology. New York: Academic Press

    Google Scholar 

  • Sinclair, R. (2003). On the last geometric statement of Jacobi, Experimental Mathematics, 12, 477–486

    MATH  MathSciNet  Google Scholar 

  • Sinclair, R. & Tanaka, M. (2002). The set of poles of a two-sheeted hyperboloid, Experimental Mathematics, 11, 27–36

    MATH  MathSciNet  Google Scholar 

  • SNR Roulements (1988). Les roulements. Paris: Nathan-Communications

    Google Scholar 

  • Spivak, M. (1970). A comprehensive introduction to differential geometry. Publish or Perish, Boston

    Google Scholar 

  • Stillwell, J. (1980). Classical topology and combinatorial group theory. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Stillwell, J. (2001). The story of the 120-cell. Notices of the American Mathematical Society, 48, 17–25

    MATH  MathSciNet  Google Scholar 

  • Stoker, J.J. (1969). Differential geometry. New York: Wiley Interscience

    Google Scholar 

  • Struik, D. (1950). Lectures on classical differential geometry. Reading, MA: Addison-Wesley

    Google Scholar 

  • Thom, R. (1972–1977). Stabilité structurelle et morphogénèse. Paris: Benjamin-InterEditions

    Google Scholar 

  • Thom, R. (1989). Structural stability and morphogenesis: An outline of a general theory of models. Reading, MA: Addison-Wesley

    Google Scholar 

  • Thomas, T. (1935). Riemannian spaces and their characterizations. Acta Mathematica, 67, 169–211

    Article  Google Scholar 

  • van Kampen, E. (1938). The theorems of Gauss-Bonnet and Stokes. American Journal of Mathematics, 60, 129–138

    Article  MATH  MathSciNet  Google Scholar 

  • Wallace, A. (1968). Differential topology. New York: Benjamin

    Google Scholar 

  • Wente, H. (1986). Counterexample to a conjecture of H. Hopf. Pacific Journal of Mathematics, 121, 193–243

    MATH  MathSciNet  Google Scholar 

  • Wichiramala, W. (2004). Proof of the planar triple bubble conjecture. Journal für die Reine und Angewandte Mathematik, 567, 1–49

    Article  MATH  MathSciNet  Google Scholar 

  • Willmore, T. (1971). Minimum curvature of Riemannian immersions. Journal of the London Mathematical Society, Second Series, 3, 307–310

    MATH  MathSciNet  Google Scholar 

  • Zamfirescu, T. (2004). On the cut locus in Aleksandrov spaces and applications to convex surfaces, Pacific J. of Math., 217(2), 375–386

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). Smooth surfaces. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_6

Download citation

Publish with us

Policies and ethics