Skip to main content

Conics and quadrics

  • Chapter
  • First Online:
Geometry Revealed
  • 4192 Accesses

Abstract

Even though there isn’t to our knowledge any important open problem concerning the conics – for quadrics it’s a different story – we are going to stay with them for a long time, but talk about the quadrics only very briefly. We hope, however, that the chapter will please many readers. More knowledgeable – but not necessarily omniscient – readers may skip all the beginning material and just look at Sects. IV.8 and IV.9. Here are our motivations: we have already stated how much the teaching of geometry , however useful it is nowadays, has almost completely disappeared from instruction, whether in middle or upper schools, or in the university. If a few circles remain, the other conic sections are gone, even though they are an integral part of many things in our everyday lives. Here are a few examples, to which readers may append their own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • [B]Berger, M. (1987, 2009). Geometry I,II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG]Berger, M., & Gostiaux, B. (1987). Differential geometry: manifolds, curves and surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Appell, P., & Lacour, E. (1922). Fonctions elliptiques. Paris: Gauthier-Villars

    Google Scholar 

  • Arnold, V. (1990). Huyghens and barrow, Newton and Hooke. Basel: Birkhäuser

    Google Scholar 

  • Arnold, V. (1999). Symplectization, complexification and mathematical trinities. In E. Bierstone, B. Khesin, A. Khovanskii, & J. E. Marsden (Eds.), The Arnoldfest (pp. 23–28). Providence, RI: American Mathematical Society

    Google Scholar 

  • Arnold, V. (2000). Polymathematics: Is mathematics a single science or a set of arts? In V. Arnold, M. Atiyah, P. Lax, & B. Mazur (Eds.), Mathematics: Frontiers and Perspectives (pp. 403–416). Providence, RI: American Mathematical Society

    Google Scholar 

  • Audin, M. (1995). Topologie des systèmes de Moser en dimension quatre. In H. Hofer, C. Taubes, A. Weinstein, & E. Zehnder (Eds.), The Floer Memorial Volume (pp. 109–122). Basel: Birkhäuser

    Google Scholar 

  • Barth, W., & Bauer, T. (1996). Poncelet theorems. Expositiones Mathematicae, 14, 125–144

    MATH  MathSciNet  Google Scholar 

  • Barth, W., & Michel, J. (1993). Modular curves and Poncelet polygons. Mathematische Annalen, 295, 25–49

    Article  MATH  MathSciNet  Google Scholar 

  • Benoist, Y., & Hulin, D. (2004). Itération de pliages de quadrilatères. Inventiones Mathematicae, 157, 147–194

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, M. (1995). Seules les quadriques admettent des caustiques. Bulletin de la Société Mathématique de France, 123, 107–116

    MATH  Google Scholar 

  • Berger, M. (2005). Dynamiser la géométrie élémentaire: introduction à des travaux de Richard Schwartz. Atti della Accademia Nazionale dei Lincei. Classe di, Ser. 25, 127–153

    MATH  Google Scholar 

  • Bochnak, J., Coste, M., & Coste-Roy, M.-F. (1998). Real algebraic geometry. Berlin/Heidelberg/ New York: Springer

    Google Scholar 

  • Bos, H., Kers, C., Oort, F., & Raven, D. (1987). Poncelet’s closure theorem. Expositiones Mathematicae, 5, 289–364

    MATH  MathSciNet  Google Scholar 

  • Bourbaki, N. (1981). Algèbre, chapitre IV. Masson

    Google Scholar 

  • Cartan, E. (1932). Sur les propriétés topologiques de la quadrique complexe. Public. math. Uni. Belgrade, ou OEuvres complètes, I-2, 1227-1246, 55–74

    Google Scholar 

  • Cayley, A. (1861). On the Porism of the in-and-circumscribed polygon. Philosophical Transactions of the Royal Society of London, CLI, 225–239

    Google Scholar 

  • Coolidge, J. (1940, 1963). A history of geometrical methods. Oxford: Oxford University Press, Dover reprint

    Google Scholar 

  • Coolidge, J. (1968). A history of the conic sections and quadric surfaces (1st ed. 1945). New York: Chelsea, Dover reprint

    Google Scholar 

  • Darboux, G. (1917). Principes de géométrie analytique. Paris: Gauthier-Villars

    Google Scholar 

  • Dieudonné, J. (1985). History of algebraic geometry. Monterey, CA: Wadsworth

    Google Scholar 

  • Dingeldey, F. (1911). Coniques et systèmes de coniques. In Encyclopédie des sciences mathématiques pures et appliqués. Paris et Leipzig: Gauthier-Villars and Teubner

    Google Scholar 

  • Donagi, R. (1980). Group law on the intersection of two quadrics. Annales scientifiques Ecole norm. sup., 7

    Google Scholar 

  • Douady, R. (1982). Applications du théorème des tores invariants. Thèse Paris VII

    Google Scholar 

  • Duporcq, E. (1938). Premiers principes de géométrie moderne. Paris: Gauthier-Villars

    Google Scholar 

  • Emch, A. (1900). Illustration of the elliptic integral of the first kind by a certain link work. Annals of Mathematics, 1, 81–92

    Article  MathSciNet  Google Scholar 

  • Emch, A. (1901). An application of elliptic functions to Peaucellier link-work (inversor). Annals of Mathematics, 2, 60–63

    Article  MathSciNet  Google Scholar 

  • Fulton, W. (1984). Intersection theory (2nd ed. 1998). Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Greenberg, M. (1974). Euclidean and non-Euclidean geometries. New York: Freeman

    Google Scholar 

  • Griffiths, P., & Harris, J. (1978a). On Cayley’s explicit solution to Poncelet’s porism. L’enseignement math., 24, 31–40

    MATH  MathSciNet  Google Scholar 

  • Griffiths, P., & Harris, J. (1978b). Principles of algebraic geometry. New York: John Wiley

    Google Scholar 

  • Grötschel, M., Lovasz, L., & Schrijver, A. (1988). Geometric algorithms and combinatorial optimization. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Gruber, P., & Wills, J. (Ed.). (1993). Handbook of convex geometry. Amsterdam: North-Holland

    Google Scholar 

  • Hadamard, J. (1911, 1988). Leçons de géométrie élémentaire (Reprint Jacques Gabay). Paris: Armand Colin

    Google Scholar 

  • Halphen, G. (1886, 1888). Traité des fonctions elliptiques, I, II. New York: Gauthier-Villars

    Google Scholar 

  • Hilbert, D., & Cohn-Vossen, S. (1999). Geometry and the imagination. Providence, RI: American Mathematical Society

    Google Scholar 

  • Hrasko, A. (1999). Letter to A. Shen. The Mathematical Intelligencer, 21(3), 50

    Google Scholar 

  • Hrasko, A. (2000). Poncelet-type problems, an elementary approach. Elemente der Mathematik, 55, 1–18

    Article  MathSciNet  Google Scholar 

  • Joets, A., & Ribotta, R. (1999). Caustique de la surface ellipsoïdale à trois dimensions. Experimental Mathematics, 8, 57–62

    MathSciNet  Google Scholar 

  • Kleiman, S. (1980). Chasles’s enumerative theory of conics: An historical introduction, in studies in algebraic geometry (pp. 117–138). Washington, DC: The Mathematical Association of America

    Google Scholar 

  • Klein, C.F. (1872). Erlangen Program. http://www.xs4all.nl/∼jemebius/ErlangerProgramm.htm#Introduction

  • Knörrer, H. (1980). Geodesics on the ellipsoid. Inventiones Mathematicae, 59, 119–143

    Article  MATH  MathSciNet  Google Scholar 

  • Lebesgue, H. (1942, 1987). Les coniques (Reprint Jacques Gabay). New York: Gauthier-Villars

    Google Scholar 

  • Levy, H. (1964). Projective and related geometries. New York: McGraw Hill

    Google Scholar 

  • Lidl, R., & Niederreiter, H. (1983). Finite fields. Cambridge,UK: Cambridge University Press

    Google Scholar 

  • McDonald, S., & Kaufmann, N. (1998). Wave chaos in the stadium: Statistical properties of short-wave solutions of the Helmholtz equation. Physical Review A, 37(8), 3067–3086

    Article  Google Scholar 

  • Morse, P.M., & Feshbach, H. (1953). Methods of theoretical physics. New York: McGraw-Hill

    Google Scholar 

  • Moser, J. (1980). Geometry of quadrics and spectral theory (pp. 147–188). In The Chern symposium. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Pécaut, F. (2005). Équivalence du grand théorème de Poncelet pour deux cercles et du théorème des zigzags. Quadratures, 58, 13–18. EDP Sciences, Les Ulis

    Google Scholar 

  • Pisier, G. (1989). The volume of convex bodies and Banach space geometry. Cambridge, UK: Cambridge University Press

    Book  Google Scholar 

  • Porteous, I. (1969). Topological geometry. London: Van Nostrand-Reinhold

    Google Scholar 

  • Ronga, F., Tognoli, A., & Vust, T. (1997). The number of conics tangent to five given conics: The real case. Revista Matemática Complutense, 10, 391–421

    MATH  MathSciNet  Google Scholar 

  • Rouché, E., & de Comberousse, C. (1912). Traité de géométrie (2 vols.). New York: Gauthier-Villars

    Google Scholar 

  • Salmon, G. (1874). A treatise on the analytic geometry of three dimensions (Reprint Chelsea). Dublin: Hodges

    Google Scholar 

  • Schwartz, R. (2007). The Poncelet grid. Advances in Geometry, 7, 157–175

    Article  MATH  MathSciNet  Google Scholar 

  • Shen, A. (1998). Mathematical entertainments. The Mathematical Intelligencer, 20, 31

    Article  MathSciNet  Google Scholar 

  • Staude, O. (1904, 1992). III 22. Quadriques. Encyclopédie des Sciences mathématiques. J. Molk, Teubner, trad. Gauthier-Villars, reprint Jacques Gabay, III, 1–162

    Google Scholar 

  • Strichartz, R. (1987). Realms of mathematics: Elliptic, hyperbolic, parabolic, sub-elliptic. The Mathematical Intelligencer, 9(3), 56–64

    Article  MATH  MathSciNet  Google Scholar 

  • Tabachnikov, S. (1995). Billiards. Paris: Société mathématique de France

    Google Scholar 

  • Tjurin, A. (1975). On intersection of quadrics. Russian Mathematical Surveys, 30, 51–105

    Article  MathSciNet  Google Scholar 

  • Van der Waerden, B. (1954–1975). Science awakening I. Groningen: Noordhoff

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). Conics and quadrics. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_4

Download citation

Publish with us

Policies and ethics