Skip to main content

Circles and spheres

  • Chapter
  • First Online:
Geometry Revealed
  • 4115 Accesses

Abstract

If the first chapter was essentially about affine and projective geometry, we now want to enter the Euclidean realm, i.e. we will now have a metric at our disposal, a notion of distance between points, with subsidiary notions such as circles and spheres. The basic reference for circles and spheres, completely authoritative at the time of its publication, is Coolidge (1916). We have made a critical selection from the enormity of classical results; see the very beginning of Sect. II.2. But of course above all we have chosen to talk about recent results, all the more if they require a climb up the ladder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [B] Berger, M. (1987, 2009). Geometry I,II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG] Berger, M., & Gostiaux, B. (1987). Differential geometry: Manifolds, curves and surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Aigner, M., & Ziegler, G. (1998). Proofs from THE BOOK. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Albouy, A., & henciner, A. (1998). Le problème des n corps et les distances mutuelles. Inventiones Mathematicae, 131, 151–184

    Article  MATH  MathSciNet  Google Scholar 

  • Apéry, F. (1982). La baderne d’Apollonius. Gazette de la Société math. France, n ° 19 (juin), 57–86

    MATH  Google Scholar 

  • Benedetti, R., & Petronio, C. (1992). Lectures on hyperbolic geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Berger, M. (1981). Une caractérisation purement métrique des variétés riemanniennes à courbure constante. In P. Butzer & F. Fehér (Eds.), E. B. Christoffel (pp. 480–492). Basel: Birkhäuser

    Google Scholar 

  • Berger, M. (1993). Les paquets de cercles. In C. E. Tricerri (Ed.), Differential geometry and topology. Singapore: World Scientific

    Google Scholar 

  • Berger, M. (2002). Les cercles de Villarceau. Pour la Science, n°292 (février 2002), 90–91

    Google Scholar 

  • Berger, M. (2003). A panoramic view of Riemannian geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Blumenthal, L. (1970). Theory and applications of distance geometry. New York: Chelsea

    Google Scholar 

  • Bobenko, A. & Hoffmann, T. (2001). Conformally symmetric circle packings : a generalization of Doyle’s spirals, Experimental Mathematics, 10, 141–150

    MATH  MathSciNet  Google Scholar 

  • Boltyanski, V., Martini, H., & Soltan, P. (1997). Excursions into combinatorial geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Borsuk, K. (1933). Drei Sätze über die dreidimensionale euklidische Sphäre. Fundamenta Mathematicae, 20, 177–190

    Google Scholar 

  • Bouasse, H. (1917). Appareils de mesure. Delagrave, reprinted by Blanchard en 1986

    Google Scholar 

  • Bouchareine, P. (1996). Charles Fabry métrologue. Annales de physique, 21, 589–600

    Article  Google Scholar 

  • Cho, Y., & Kim, H. (1999). On the volume formula for hyperbolic polyhedra. Discrete & Computational Geometry, 22, 347–366

    Article  MATH  MathSciNet  Google Scholar 

  • Connes, A. (1999). Le théorème de Morley. Publ. Math. Inst. Hautes Études Sci., numéro special des 40 ans

    Google Scholar 

  • Coolidge, J. (1916, 1999). A treatise on the circle and the sphere. Oxford/New York: Clarendon Press/AMS Chelsea

    Google Scholar 

  • Cromwell, P. (1997). Polyhedra. Cambridge: Cambridge University Press

    Google Scholar 

  • Darboux, G. (1880). Sur le contact des coniques et des surfaces. Comptes Rendus, AcadÈmie des sciences de Paris, 91, 969–971

    Google Scholar 

  • Darboux, G. (1917). Principes de géométrie analytique. Paris: Gauthier-Villars

    Google Scholar 

  • Davis, P. (1995). The rise, fall and possible transfiguration of triangle Geometry: a mini-history. The American Mathematical Monthly, 102, 204–214

    Article  MATH  MathSciNet  Google Scholar 

  • Dieudonné, J. (1960). Foundations of modern analysis. New York: Academic Press

    Google Scholar 

  • Doyle, P., He, Z.-X., & Rodin, B. (1994). The asymptotic value of the circle packing constant. Discrete & Computational Geometry, 12, 105–116

    Article  MATH  MathSciNet  Google Scholar 

  • Eggleston, H. (1957). Covering a three-dimensional set with sets of smaller diameter. Journal of the London Mathematical Society, Second Series, 30, 11–24

    MathSciNet  Google Scholar 

  • Encyclopedic Dictionary. (1985). Encyclopedic dictionary of mathematics (3rd ed.). Cambridge: M.I.T

    Google Scholar 

  • Evelyn, C., Money-Coutts, G., & Tyrelle, J. (1975). Le théorème des sept cercles. Paris: CEDIC

    Google Scholar 

  • Falconer, K. (1990). Fractal geometry. New York: John Wiley

    Google Scholar 

  • Faugeras, O. (1993). Three-dimensional computer vision: A geometric viewpoint. Cambridge: MIT Press

    Google Scholar 

  • Feder, J. (1988). Fractals. New York: Plenum Press

    Google Scholar 

  • Frances, C. (2003). Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique. Líenseignement mathématique, 49, 95–100

    MATH  MathSciNet  Google Scholar 

  • Frenkel, J. (1973). Géométrie pour l’élève professeur. Paris: Hermann

    Google Scholar 

  • Giacomo, P. (1995). Du platine à la lumière. Bulletin BNM, 102, 5–14

    Google Scholar 

  • Grünbaum, B. (1993). Convex Polytopes. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Gutkin, E. (2003). Extremal triangles for a triple ofconcentric circles. Preprint IHES, M03-46

    Google Scholar 

  • Hadamard, J. (1911). Leçons de géométrie élémentaire. Paris: Armand Colin, reprint Jacques Gabay, 2004

    Google Scholar 

  • Hilbert, D., & Cohn-Vossen, S. (1996), Anschauliche Geometrie. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Kahn, J., & Kalai, G. (1993). A counterexample to Borsuk’s conjecture. Bulletin of the American Mathematical Society, 29, 60–62

    Article  MATH  MathSciNet  Google Scholar 

  • Klein, F. (1926–1949). Vorlesungen über höhere Geometrie, 3ème édition, bearbeitet und herausgegeben von W. Blaschke. Berlin/Heidelberg/New York: Springer, 1926, reprint Chelsea 1949

    Google Scholar 

  • Lalesco, T. (1952). La géométrie du triangle. Vuibert, reprint Jacques Gabay, 1987

    Google Scholar 

  • Langevin, R. & Walczak, P. (2008). Holomorphic maps and pencils of circles, American Mathematical Monthly, 115(8), 690–700

    MathSciNet  Google Scholar 

  • Lebesgue, H. (1950). Leçons sur les constructions géométriques. Paris: Gauthier-Villars, reprint Jacques Gabay, 1987

    Google Scholar 

  • Mandelbrot, B. (1977). Fractals: Form, chance and dimension. New York: Freeman

    Google Scholar 

  • Mandelbrot, B. B. (1982). The fractal geometry of nature. New York: W.H. Freeman and Company

    Google Scholar 

  • Maskit, B. (1988). Kleinean groups. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Mathéus, F. (1999). Empilements de cercles et discrétisation quasiconforme: comportement asymptotique des rayons. Discrete & Computational Geometry, 22, 41–61

    Article  MATH  MathSciNet  Google Scholar 

  • Nevanlinna, R. (1960). On differentiable mappings. In Analytic functions (pp. 3–9). Princeton, NJ: Princeton University Press

    Google Scholar 

  • Pach, J., & Agarwal, P. (1995). Combinatorial geometry. New York: Wiley

    Google Scholar 

  • Penrose, R. (1978). Geometry of the universe. In L. A. Steen (Ed.), Mathematics today - twelve informal essays. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Pommerenke, C. (1992). Boundary behavior of conformal maps. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Raigorodskii, A. (2004). The Borsuk partition problem: The seventieth anniversary. The Mathematical Intelligencer, 26, 4–12

    Article  MATH  MathSciNet  Google Scholar 

  • Ratcliffe, J. (1994). Foundations of hyperbolic manifolds. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Rodin, B., & Sullivan, D. (1987). The convergence of circle packings to the Riemann mapping. Journal of Differential Geometry, 26, 349–360

    MATH  MathSciNet  Google Scholar 

  • Rouché, E. & de Comberousse, C. (1912). Traité de Géométrie (two volumes). Paris: Gauthier-Villars, reprint Jacques Gabay, 2004

    Google Scholar 

  • Smith, A. (2000). Infinite regular sequences of hexagons. Experimental Mathematics, 9, 397–406

    MATH  MathSciNet  Google Scholar 

  • Stephenson, K. (2003). Circle packing: A mathematical tale. Notices of the American Mathematical Society, 50, 1376–1388

    MATH  MathSciNet  Google Scholar 

  • Stephenson, K. (2005). Introduction to circle packing. Cambridge: Cambridge University Press

    Google Scholar 

  • Sullivan, D. (1984). Entropy, Hausdorff measures old and new, and limit sets of geometrically finite groups. Acta Mathematica, 153, 259–278

    Article  MATH  MathSciNet  Google Scholar 

  • Tabachnikov, S. (2000). Going in circles: variations on the Money-Coutts theorem, Geometriae Dedicata, 80, 201–209

    Article  MATH  MathSciNet  Google Scholar 

  • Vinberg, E. (1993). Volumes of non-Euclidean polyhedra. Russian Mathematical Surveys, 48, 15–48

    Article  MathSciNet  Google Scholar 

  • Yvon Villarceau, A. (1948). Note concernant untroisième système de sections circulaires qu’admet le tore circulaire ordinaire, C. R. Acad. Sciences Paris, 27, 246

    Google Scholar 

  • Ziegler, D. (1995). Lectures on Polytopes, GraduateTexts in Mathematics, New York: Springer Verlag

    Google Scholar 

  • Zong, C. (1996). Strange phenomena in convex and discrete geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). Circles and spheres. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_2

Download citation

Publish with us

Policies and ethics