Skip to main content

Geometry and dynamics I: billiards

  • Chapter
  • First Online:
Geometry Revealed

Abstract

We consider the simplest possible but nontrivial problem of particle mechanics : on an interval, say [0,1], we consider two particles of the same mass that oscillate. They move about at constant velocity unless there is a collision, either at an endpoint or in encountering each other. The conditions in case of collision are these: when the particle on the left encounters the wall on the left at 0, it rebounds with the same speed and of course in the opposite direction; likewise when the particle on the right rebounds from the wall on the right at the point 1. When they encounter each other (with opposed directions) the condition is what is called an elastic collision, physically one where, after the deformation caused by the collision, the two solids reassume their shapes and retain their combined kinetic energy and momentum. It can be shown that the particles emerge in the opposite directions, but exchange their velocities. The well known and spectacular case is where one is fixed; then the other remains fixed at the point of contact while the first leaves with the same velocity as the particle that hit it. If they encounter each other while going the same direction the result is still the same: the particles exchange their velocities; the particle that was moving faster loses speed to the benefit of the other. The fundamental problem is to describe this simultaneous movement of the two particles over time, but especially when things continue indefinitely or at least for a long period of time. This consideration of infinity is natural in physics when the particles are excited with extremely large velocities and where extremely many collisions occur in a short time interval. In particular, will the motion ultimately be periodic or, to the contrary, will the particles ultimately occupy practically all possible positions?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.95
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • [B] Berger, M. (1987, 2009) Geometry I, II. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • [BG] Berger, M., & Gostiaux, B. (1987) Differential Geometry: Manifolds, Curves and Surfaces. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Anosov, D., & Arnold, V. (Eds.). (1988). Dynamical systems I. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Arnold, V., & Avez, A. (1967). Problèmes ergodiques de la mécaniqueclassique. Paris: Gauthier-Villars

    Google Scholar 

  • Arnoux, P. (1988). Ergodicité générique des billards polygonaux, Séminaire Bourbaki 1987–1988. In Astérique 161–162, Société mathématique de France, 203–222

    Google Scholar 

  • Baryshnikov, Y. (1995). Complexity of trajectories in rectangular billiards. Communications in Mathematical Physics, 174, 43–56

    Article  MATH  MathSciNet  Google Scholar 

  • Berger, M. (1991). Les billiards mathématiques. Pour la Science 163, mai 1991, 76–85

    Google Scholar 

  • Berger, M. (1995). Seules lesquadriques admettent des caustiques. Bulletin de laSociété MathÈmatique de France, 123, 107–116

    MATH  Google Scholar 

  • Berger, M. (1999).Riemannian geometry during the second half of the twentiethcentury. Providence: American Mathematical Society

    Google Scholar 

  • Berger, M. (2000a). Encounterwith a geometer I, II. Notices of the American MathematicalSociety, 47(2), 47(3), 183–194, 326–340

    MATH  Google Scholar 

  • Berger, M. (2003). Apanoramic introduction to Riemannian geometry. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Boshernitzan, M., Galperin, G., Krüger, T., & Troubetzkoy, S.(1998). Periodic billiard orbits are dense in rational polygons. Transactions of the American Mathematical Society, 350, 3523–3535

    Article  MATH  MathSciNet  Google Scholar 

  • Cipran, B., Hanson, R., & Kolan, A. (1995). Periodic trajectories in right trianglebilliards. Physical Review, E52(3), 2066–2071

    Article  MathSciNet  Google Scholar 

  • Damour, T., De Buyl, S., Henneaux, M., & Schomblond, C. (2002). Einsteinbilliards and overextensions of finite-dimensional simple Liealgebras. Journal of High Energy Physics, 8, 2002

    Google Scholar 

  • Dogru, F., &Tabachnikov, S. (2002). On polygonal dual billiards in thehyperbolic plane. Regular and Chaotic Dynamics, 8, 67–82

    Article  MathSciNet  Google Scholar 

  • Douady, R. (1982). Applications du théorème des tores invariants.Thèse Paris VII 1982

    Google Scholar 

  • Eskin, A., & Masur, H. 2001). Asymptotic formulas on flat surfaces. Ergodic Theory andDynamical Systems, 21, 443–478

    MATH  MathSciNet  Google Scholar 

  • Galperin, G. (1983). Non-periodic and not everywhere dense billiard trajectories inconvex polygons and polyhedrons. Commentarii Mathematici Helvetici, 91, 187–211

    MATH  MathSciNet  Google Scholar 

  • Galperin, G., & Zemlyakov, A. (1990). Mathematical billiards (in Russian)

    Google Scholar 

  • Gardner, M. (1984). Bounding balls in polygons and polyhedrons. In Gardner, M. (Ed.),The sixth book of mathematical games from Scientific American (pp. 29–38, 211–214). Chicago: University of Chicago Press

    Google Scholar 

  • Ghomi, M. (2004). Shortestperiodic billiard trajectories in convex bodies. Geometricand Functional Analysis, 14, 295–302

    Article  MATH  MathSciNet  Google Scholar 

  • Gromov, M. (1999a).Metric structures for Riemannian and Non-Riemannian spaces, J. Lafontaine & P. Pansu (Eds.), Basel: Birkhäuser

    Google Scholar 

  • Gruber, P. (1990). Convexbilliards. Geometriae Dedicata, 33, 205–226

    Article  MATH  MathSciNet  Google Scholar 

  • Gruber, P. (1994). Onlyellipsoids have caustics. Mathematische Annalen, 303, 185–194

    Article  MathSciNet  Google Scholar 

  • Gruber, P., & Wills, J.(Eds.). (1993). Handbook of convex geometry. Amsterdam: North-Holland

    Google Scholar 

  • Gutkin, E. (1984). Billiardson almost integrable polyhedral surfaces. Ergodic Theory and Dynamical Systems, 4, 569–584

    Article  MATH  MathSciNet  Google Scholar 

  • Gutkin, E. (1996). Billiardsin polygons: survey of recent results. Journal of Statistical Physics, 83, 7–26

    Article  MATH  MathSciNet  Google Scholar 

  • Gutkin, E. (2003). Extremaltriangles for a triple of concentric circles. Preprint IHES, M03-46

    Google Scholar 

  • Gutkin, E., &Tabachnikov, S. (2002). Billiards in Finsler and Minkovskigeometries. Journal of Geometry and Physics, 40, 277–301

    Article  MATH  MathSciNet  Google Scholar 

  • Gutkin, E., &Troubetzkoy, S. (1996). Directional flows and strong recurrence for polygonal billiards. International Conference on DynamicalSystems (Montevideo, 1995), Pitman Res. Notes Math. Ser., 362, Longman: Harlow, 21–45

    Google Scholar 

  • Hadamard, J. (1898). Surle billard non-euclidien. Proc. verb. soc. sci. phys. etnat. Bordeaux, 5 mai

    Google Scholar 

  • Halpern, B. (1977). Strangebilliards tables. Transactions of the American Mathematical Society, 232, 297–305

    MATH  MathSciNet  Google Scholar 

  • Hubert, P. (1995). Complexité des suites définies par des billards rationnels. Bulletin de la Société MathÈmatique de France,123, 257–270

    MATH  MathSciNet  Google Scholar 

  • Katok, A. (1987). The growthrate of singular and periodic orbits for a polygonal billiard. Communications in Mathematical Physics, 111, 151–160

    Article  MATH  MathSciNet  Google Scholar 

  • Katok, A., &Hasselblatt, B. (1995). Introduction to the modern theory ofdynamical systems. Cambridge: Cambridge University Press

    Google Scholar 

  • Katok, A., & Strelcyn, J.-M. (1986). Invariant manifolds, entropy and billiards, smooth maps with singularities. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Kerckhoff, S., Masur, H., & Smillie, J. (1986). Ergodicity of billiards flows and quadratic differentials. Annals of Mathematics, 124, 293–311

    Article  MathSciNet  Google Scholar 

  • Lazutkin, V. (1993).KAM theory and semiclassical approximations toeigenfunctions. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Mané, R. (1987).Ergodic theory and differentiable dynamics. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Marmi, S. (2000). Chaoticbehavior in the solar system, Séminaire Bourbaki(1998–1999). Astérisque, 266, 113–136

    MathSciNet  Google Scholar 

  • Masur, H. (1990). The growthrate of trajectories of a quadratic differential. ErgodicTheory and Dynamical Systems, 10, 151–176

    MATH  MathSciNet  Google Scholar 

  • Masur, H., &Tabachnikov, S. (2002). Rational billiards and flat structures. In H. A. Katok (Ed.), Handbook of dynamical systems (pp. 1015–1089) Amsterdam: Elsevier

    Chapter  Google Scholar 

  • Mather, J. (1982). Glancingbilliards. Ergodic Theory and Dynamical Systems, 2, 397–403

    Article  MATH  MathSciNet  Google Scholar 

  • Morse, M., & Hedlund, G.(1940). Symbolic dynamics 2, Sturmian trajectories. AmericanJournal of Mathematics, 62, 1–42

    Article  MathSciNet  Google Scholar 

  • Moser, J. (1978). Is the solarsystem stable? The Mathematical Intelligencer, 1, 65–71

    Article  MathSciNet  Google Scholar 

  • Porter, M., & Lansel, S.(2006). Mushroom Billiards, Notices of the American Mathematical Society, 53, 334–337

    MATH  MathSciNet  Google Scholar 

  • Sarnak, P. (1995). Arithmetic Quantum Chaos. In The schur lectures (Tel-Aviv 1992), Israel Mathematics Conference Proceedings, 8, Bar-Ilan University, Ramat-Gan, Isral, 183–236

    Google Scholar 

  • Schwartz, R. (2006a).Near isosceles billiards: scaling limits and fourierseries. http://www.math.brown.edu/∼res/Billiards/index.html

  • Schwartz, R. (2006b). Obtuse triangle billiards II:100 degrees worth of periodic trajectories. Experimental Mathematics, 18, 137–171

    Google Scholar 

  • Schwartz, R. (2006c). Obtuse triangle billiards I: near the.2; 3; 6/ triangle. Experimental Mathematics, 15, 161–182

    MATH  MathSciNet  Google Scholar 

  • Sinaï, Y. (1976).Introduction to ergodic theory, Math. notes 18. Princeton: Princeton University Press

    Google Scholar 

  • Sinaï, Y. (Ed.).(1987). Dynamicals systems II, encyclopaedia of mathematicalsciences (Vol. 2). Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Sinaï, Y. (1990). Hyperbolic billiards. In Proceedings of the International Congress of Mathematicians, Kyoto 1990, Springer, 249–260

    Google Scholar 

  • Stenman, F. (1975). Periodic orbits in a tetrahedral mirror. Commentationes Physico-Mathematicae, 45, 103–110

    MathSciNet  Google Scholar 

  • Tabachnikov, S.(1995). Billiards. Paris: Société mathématiquede France

    Google Scholar 

  • Tabachnikov, S.(2002). Dual billiards in the hyperbolic plane. Nonlinearity, 15, 1051–1072

    Article  MATH  MathSciNet  Google Scholar 

  • Tabachnikov, S. (2005). Geometry and Billiards, AMS Student Mathematical Studies (Vol. 30). Providence: American Mathematical Society

    Google Scholar 

  • Ulam, S. (1976).Adventures of a mathematician. New York: Charles Scribner’s Sons

    Google Scholar 

  • Veech, W. (1992). The billiardin a regular polygon. Geometric and Functional Analysis, 2, 341–379

    Article  MATH  MathSciNet  Google Scholar 

  • Walters, P. (1982).An introduction to ergodic theory. Berlin/Heidelberg/New York: Springer

    Google Scholar 

  • Wojtkowski, M.(1986). Principles for the design of billiards with nonvanishing Lyapunov exponents. Communications in Mathematical Physics,105, 391–414

    Article  MATH  MathSciNet  Google Scholar 

  • Zagier, D. (1977). The first 50 millions prime numbers. The Mathematical Intelligencer,0, 7–19

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, M. (2010). Geometry and dynamics I: billiards. In: Geometry Revealed. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70997-8_11

Download citation

Publish with us

Policies and ethics