Skip to main content

Mixture Models for Classification

  • Conference paper
Advances in Data Analysis

Abstract

Finite mixture distributions provide efficient approaches of model-based clustering and classification. The advantages of mixture models for unsupervised classification are reviewed. Then, the article is focusing on the model selection problem. The usefulness of taking into account the modeling purpose when selecting a model is advocated in the unsupervised and supervised classification contexts. This point of view had lead to the definition of two penalized likelihood criteria, ICL and BEC, which are presented and discussed. Criterion ICL is the approximation of the integrated completed likelihood and is concerned with model-based cluster analysis. Criterion BEC is the approximation of the integrated conditional likelihood and is concerned with generative models of classification. The behavior of ICL for choosing the number of components in a mixture model and of BEC to choose a model minimizing the expected error rate are analyzed in contrast with standard model selection criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AITKIN, M. (2001): Likelihood and Bayesian Analysis of Mixtures. Statistical Modeling, 1, 287–304.

    Article  Google Scholar 

  • AKAIKE, H. (1974): A New Look at Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  MathSciNet  MATH  Google Scholar 

  • BANFIELD and RAFTERY, A.E. (1993): Model-based Gaussian and Non-Gaussian Clustering. Biometrics, 49, 803–821.

    Article  MathSciNet  MATH  Google Scholar 

  • BENSMAIL, H. and CELEUX, G. (1996): Regularized Gaussian Discriminant Analysis Through Eigenvalue Decomposition. Journal of the American Statistical Association, 91, 1743–48.

    Article  MathSciNet  MATH  Google Scholar 

  • BIERNACKI, C., CELEUX., G. and GOVAERT, G. (2000): Assessing a Mixture Model for Clustering with the Integrated Completed Likelihood. IEEE Trans. on PAMI, 22, 719–725.

    Article  Google Scholar 

  • BIERNACKI, C., CELEUX., G. and GOVAERT, G. (2003): Choosing Starting Values for the EM Algorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models. Computational Statistics and Data Analysis, 41, 561–575.

    Article  MathSciNet  MATH  Google Scholar 

  • BIERNACKI, C., CELEUX, G., GOVAERT G. and LANGROGNET F. (2006): Model-based Cluster Analysis and Discriminant Analysis With the MIXMOD Software, Computational Statistics and Data Analysis (to appear).

    Google Scholar 

  • BOUCHARD, G. and CELEUX, G. (2006): Selection of Generative Models in Classification. IEEE Trans. on PAMI, 28, 544–554.

    Article  Google Scholar 

  • BRYANT, P. and WILLIAMSON, J. (1978): Asymptotic Behavior of Classification Maximum Likelihood Estimates. Biometrika, 65, 273–281.

    Article  MATH  Google Scholar 

  • CELEUX, G., CHAUVEAU, D. and DIEBOLT, J. (1996): Some Stochastic Versions of the EM Algorithm. Journal of Statistical Computation and Simulation, 55, 287–314.

    Article  MATH  Google Scholar 

  • CELEUX, G. and GOVAERT, G. (1991): Clustering Criteria for Discrete Data and Latent Class Model. Journal of Classification, 8, 157–176.

    Article  MATH  Google Scholar 

  • CELEUX, G. and GOVAERT, G. (1992): A Classification EM Algorithm for Clustering and Two Stochastic Versions. Computational Statistics and Data Analysis, 14, 315–332.

    Article  MathSciNet  MATH  Google Scholar 

  • CELEUX, G. and GOVAERT, G. (1993): Comparison of the Mixture and the Classification Maximum Likelihood in Cluster Analysis. Journal of Computational and Simulated Statistics, 14, 315–332.

    MathSciNet  Google Scholar 

  • CIUPERCA, G., IDIER, J. and RIDOLFI, A.(2003): Penalized Maximum Likelihood Estimator for Normal Mixtures. Scandinavian Journal of Statistics, 30, 45–59.

    Article  MathSciNet  MATH  Google Scholar 

  • DEMPSTER, A.P., LAIRD, N.M. and RUBIN, D.B. (1977): Maximum Likelihood From Incomplete Data Via the EM Algorithm (With Discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • DIEBOLT, J. and ROBERT, C. P. (1994): Estimation of Finite Mixture Distributions by Bayesian Sampling. Journal of the Royal Statistical Society, Series B, 56, 363–375.

    MathSciNet  MATH  Google Scholar 

  • FIGUEIREDO, M. and JAIN, A.K. (2002): Unsupervised Learning of Finite Mixture Models. IEEE Trans. on PAMI, 24, 381–396.

    Article  Google Scholar 

  • FRALEY, C. and RAFTERY, A.E. (1998): How Many Clusters? Answers via Modelbased Cluster Analysis. The Computer Journal, 41, 578–588.

    Article  MATH  Google Scholar 

  • FRIEDMAN, J. (1989): Regularized Discriminant Analysis. Journal of the American Statistical Association, 84, 165–175.

    Article  MathSciNet  Google Scholar 

  • GANESALINGAM, S. and MCLACHLAN, G. J. (1978): The Efficiency of a Linear Discriminant Function Based on Unclassified Initial Samples. Biometrika, 65, 658–662.

    Article  MathSciNet  MATH  Google Scholar 

  • GOODMAN, L.A. (1974): Exploratory Latent Structure Analysis Using Both Identifiable and Unidentifiable Models. Biometrika, 61, 215–231.

    Article  MathSciNet  MATH  Google Scholar 

  • HASTIE, T. and TIBSHIRANI, R. (1996): Discriminant Analysis By Gaussian Mixtures. Journal of the Royal Statistical Society, Series B, 58, 158–176.

    MathSciNet  Google Scholar 

  • HUNT, L.A. and BASFORD K.E. (2001): Fitting a Mixture Model to Three-mode Three-way Data With Missing Information. Journal of Classification, 18, 209–226.

    MathSciNet  MATH  Google Scholar 

  • KASS, R.E. and RAFTERY, A.E. (1995): Bayes Factors. Journal of the American Statistical Association, 90, 773–795.

    Article  MathSciNet  MATH  Google Scholar 

  • KERIBIN, C. (2000): Consistent Estimation of the Order of Mixture. Sankhya, 62, 49–66.

    MathSciNet  MATH  Google Scholar 

  • MARIN, J.-M., MENGERSEN, K. and ROBERT, C.P. (2005): Bayesian Analysis of Finite mixtures. Handbook of Statistics, Vol. 25, Chapter 16. Elsevier B.V.

    Google Scholar 

  • MCLACHLAN, G.J. and PEEL, D. (2000): Finite Mixture Models. Wiley, New York.

    Book  MATH  Google Scholar 

  • RAFTERY, A.E. (1995): Bayesian Model Selection in Social Research (With Discussion). In: P.V. Marsden (Ed.): Sociological Methodology 1995, Oxford, U.K.: Blackwells, 111–196.

    Google Scholar 

  • RAFTERY, A.E. and DEAN, N. (2006): Journal of the American Statistical Association, 101, 168–78.

    Article  MathSciNet  MATH  Google Scholar 

  • ROEDER, K. (1990): Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in Galaxies. Journal of the American Statistical Association, 85, 617–624.

    Article  MATH  Google Scholar 

  • SCHWARZ, G. (1978): Estimating the Dimension of a Model. The Annals of Statistics, 6, 461–464.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Celeux, G. (2007). Mixture Models for Classification. In: Decker, R., Lenz, H.J. (eds) Advances in Data Analysis. Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70981-7_1

Download citation

Publish with us

Policies and ethics