Advertisement

Infection and Disease in Reservoir and Spillover Hosts: Determinants of Pathogen Emergence

  • P. W. Daniels
  • K. Halpin
  • A. Hyatt
  • D. Middleton
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 315)

Infection and disease in reservoir and spillover hosts determine patterns of infectious agent availability and opportunities for infection, which then govern the process of transmission between susceptible species. In this chapter, using the zoonotic agents Hendra virus and Nipah virus as examples, the pathogenesis of infection in various species including the wildlife reservoirs and domestic spillover hosts is reviewed with an emphasis on the aspects of pathogenesis which contribute to the dissemination of infection. Through these discussions, the emergence of these zoonotic agents is explored.

Keywords

Emerg Infect Nipah Virus Hendra Virus Infected Farm Wildlife Reservoir 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrama, H. A. & Scott, J. W. (2006). Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J. Am. Soc. Hortic. Sci. 131, 267–272. Banerjee, M. K. & Kalloo. (1987). Inheritance of tomato leaf curl virus resistance in Lycopersicon hirsutum f. glabratum. Euphytica 36, 581–584.Google Scholar
  2. Chagué, V., Mercier, J. C., Guenard, M., de Courcel, A., & Vedel, F. (1997). Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor. Appl. Genet. 95, 671–677.CrossRefGoogle Scholar
  3. Chiang, B. T., Maxwell, D., & Green, S. (1994). Leaf curl virus in Taiwan. Tomato Leaf Curl Newsl. No. 5, 3.Google Scholar
  4. de Castro, A. P., Diez, M. J., & Nuez, F. (2005). Evaluation of breeding tomato lines partially resistant to Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl virus derived from Lycopersicon chilense. Can. J. Plant Path. 27, 268–275.Google Scholar
  5. Fargette, D. (1991). Quelques proprietes de la resistance varietale a l’enroulement de la tomate. Resistance of the Tomato to TYLCV. In H. Laterrot & C. Trousse (Eds.), Proceedings of the Seminar of EEC Contract DGXII-TS2-A-055 F (CD) Partners. Montfavet-Avignon, France:INRA-Stationd’ Amelioration des Plantes Maraicheres, pp. 47–49.Google Scholar
  6. Fauquet, C. M., Bisaro, D. M., Briddon, R. W., Brown, J. K., Harrison, B. D., Rybicki, E. P., Stenger, D. C., & Stanley, J. (2003). Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch. Virol. 14, 405–421.CrossRefGoogle Scholar
  7. Fauquet, C. M., Sawyer, S., Idris, A. M., & Brown, J. K. (2005). Sequence analysis and classification of apparent recombinant begomoviruses infecting tomato in the Nile and Mediterranean Basins. Phytopathology 95, 549–555.CrossRefPubMedGoogle Scholar
  8. Foolad, M. R. & Sharma, A. (2005). Molecular markers as selection tools in tomato breeding. Acta Hortic. 695, 225–240.Google Scholar
  9. Friedmann, M., Lapidot, M., Cohen, S., & Pilowsky, M. (1998). A novel source of resistance to tomato yellow leaf curl virus exhibiting a symptomless reaction to viral infection. J. Am. Soc. Hortic. Sci. 123, 1004–1006.Google Scholar
  10. Geneif, A. A. (1984). Breeding for resistance to tomato leaf curl virus in tomatoes in the Sudan. Acta Hortic. 143, 469–484.Google Scholar
  11. Giordano, L. B., Silva-Lobo, V. L., Santana, F. M., Fonseca, M. E. N., & Boiteux, L. S. (2005). Inheritance of resistance to the bipartite tomato chlorotic mottle begomovirus derived from Lycopersicon esculentum cv. ‘Tyking’. Euphytica 143, 27–33.CrossRefGoogle Scholar
  12. Green, S. K. & Shanmugasundaram, S. (2006). Chapter in this book.Google Scholar
  13. Griffiths, P. D. (1998). Inheritance and linkage of geminivirus resistance genes derived from Lycopersicon chilense Dunal in tomato (Lycopersicon esculentum Mill.). Ph.D. Dissertation, University of Florida, Gainesville, FL.Google Scholar
  14. Griffiths, P. D. & Scott, J. W. (2001). Inheritance and linkage of tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA1932. J. Am. Soc. Hortic. Sci. 126, 462–467.Google Scholar
  15. Hanson, P. M., Bernacchi, D., Green, S., Tanksley, S. D., Muniyappa, V., Padmaja, A. S., Chen, H. M., Kuo, G., Fang, D., & Chen, J. T. (2000). Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J. Am. Soc. Hortic. Sci. 125, 15–20.Google Scholar
  16. Hanson, P. M., Green, S. K., & Kuo, G. (2006). Ty-2, a gene on chromosome 11 conditioning gem- inivirus resistance in tomato. Rep. Tomato Genet. Coop. 56, 17–18.Google Scholar
  17. Hassan, A. A. & Abdel-Ati, K. E. A. (1999). Genetics of tomato yelloe leaf curl virus tolerance derived from Lycopersicon pimpinellifolium and Lycopersicon pennellii. Egypt J. Hortic. 26, 323–338.Google Scholar
  18. Hassan, A. A., Mazyad, H. M., Moustafa, S. E., & Nakhla, M. K. (1982). Assessment of tomato yellow leaf curl virus resistance in the genus Lycopersicon. Egypt. J. Hortic. 9, 13–116. Hassan, A. A., Mazyad, H. M., Moustafa, S. E., Nassar, S. H., Nakhla, M. K., & Sims, W. L. (1984). Inheritance of resistance to tomato yellow leaf curl virus derived from Lycopersicon cheesmanii and Lycopersicon hirsutum. HortScience 19, 574–575.Google Scholar
  19. Hassan, A. A., Laterrot, H., Mazyad, H. M., Moustafa, S. E., & Nakhla, M. K. (1987). Use of Lycopersicon peruvianum as a source of resistance to tomato yellow leaf curl virus. Egypt J. Hortic. 14, 173–176.Google Scholar
  20. Ioannou, N. (1985). Yellow leaf curl and other virus diseases of tomato in Cyprus. Plant Pathol. 34, 428–434.CrossRefGoogle Scholar
  21. Ji, Y. & Scott, J. W. (2004). Development of molecular markers linked to Lycopersicon chilense derived geminivirus resistance genes on chromosome 6 of Tomato, In Proceedings of Tomato Breeders Roundtable, Annapolis, Maryland. October 17–24.Google Scholar
  22. Ji, Y. & Scott, J. W. (2005a). Identification of RAPD markers linked to Lycopersicon chilense derived geminivirus resistance genes on chromosome 6 of tomato. Acta Hortic. 695, 407–416.Google Scholar
  23. Ji, Y. & Scott, J. W. (2005b). Development of SCAR and CAPS markers linked to tomato bego- movirus resistance genes introgressed from Lycopersicon chilense. HortScience 40, 1090.Google Scholar
  24. Ji, Y. & Scott, J. W. (2006a). Development of breeder friendly markers for begomovirus resistance genes derived from L. chilense. In Proceedings of the Tomato Breeders Roundtable. Tampa, FL, USA, May 7–12, roundtable06.ifas.ufl.edu/Schedule.htm.
  25. Ji, Y. & Scott, J. W. (2006b). Ty-3, a begomovirus resistance locus linked to Ty-1 on chromosome 6. Rept. Tomato Genetics Cooperation 56, 22–25.Google Scholar
  26. Ji, Y., Schuster, D. J., & Scott, J. W. (2007). Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol. Breed. (in press).Google Scholar
  27. Jones, D. R. (2003). Plant viruses transmitted by whiteflies. Eur. J. Plant Pathol. 109, 195–219. Kalloo, G. & Banerjee, M. K. (1990). Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed. 105, 156–159.Google Scholar
  28. Kasrawi, M. A. (1989). Inheritance of resistance to tomato yellow leaf curl virus (TYLCV) in Lycopersicon pimpinellifolium. Plant Dis. 73, 435–437.CrossRefGoogle Scholar
  29. Kasrawi, M. A. (1991). Tomato production and tomato yellow leaf curl viruses in Jordan. Resistance of the tomato to TYLCV. In H. Laterrot & C. Trousse (Eds.), Proceedings of the Seminar of EEC Contract DGXII-TS2-A-055 F (CD) Partners. Montfavet-Avignon, France:INRA-Station d’Amelioration des Plantes Maraicheres, pp. 14–16.Google Scholar
  30. Kheyr-Pour, A. M., Bendahmane, V. M., Accotto, G. P., Crespi, S., & Gronenborn, B. (1991). Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res. 19, 6763–6769.CrossRefPubMedGoogle Scholar
  31. Kon, T., Hidayat, S. H., Hase, S., Takahashi, H., & Ikegami, M. (2006). The natural occurrence of two distinct begomoviruses associated with DNAβ and a recombinant DNA in a tomato plant from Indonesia. Phytopathology 96, 517–525.CrossRefPubMedGoogle Scholar
  32. Kosambi, D. (1944). The estimation of map distances from recombination values. Ann. Eugen. 12, 172–175.Google Scholar
  33. Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428.CrossRefGoogle Scholar
  34. Lander, E., Green, P., Abrahamson, J., Barlow, A., Daly, M., Lincoln, S., & Newburg, L. (1987). MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181.CrossRefPubMedGoogle Scholar
  35. Lapidot, M., Friedmann, M., Lachman, O., Yehezkel, A., Nahon, S., Cohen, S., & Pilowsky, M. (1997). Comparison of resistance level to tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis. 81, 1425–1428.CrossRefGoogle Scholar
  36. L., & Pilowsky, M. (2000). Breeding tomatoes for resistance to tomato yellow leaf curl begomovirus. Bull. OEPP/EPPO 30, 317–321.Google Scholar
  37. Laterrot, H. (1984). Station d’amelioration des plantes maraicheres d’Avigon. Rapport d’activite 1983–1984:86.Google Scholar
  38. Laterrot, H. (1992). Resistance genitors to tomato yellow leaf curl virus (TYLCV). Tomato Leaf Curl Newsl. 1, 2–4.Google Scholar
  39. Laterrot, H. & Moretti, A. (1994). The chiltylic populations of the EEC-DGX programme. Tomato Leaf Curl Newsl. 5, 2.Google Scholar
  40. Maxwell, D. P., Martin, C., Salus, M., Montes, L., & Mejía, L. (2006). Tagging begomovirus resist-ance genes. www.plantpath.wisc.edu/GeminivirusResistantTomatoes/Markers.
  41. Maruthi, M. N., Czosnek, H., Vidavski, F., Tarba, S. Y., Milo, J., Leviatov, S., Venkatesh, H. M., Padmaja, A. S., Kukarni, R. S., & Muniyappa, V. (2003). Comaprison of resistance to Tomato leaf curl virus (India) and Tomato yellow leaf curl virus (Israel) among Lycopersicon wild species, breeding lines and hybrids. Eur. J. Plant Pathol. 109, 1–11.CrossRefGoogle Scholar
  42. Mejía, L., Teni, R. E., Vidavski, F., Czosnek, H., Lapidot, M., Nakhla, M. K., & Maxwell, D. P. (2005). Evaluation of tomato germplasm and selection of breeding lines for resistance to begomoviruses in Guatemala. Acta Hortic. 695, 251–255.Google Scholar
  43. Milo, J. (2001). The PCR-based marker REX-1, linked to the gene Mi, can be used as a marker to TYLCV tolerance. In Proceedings of the Tomato Breeders Roundtable, Antigua, Guatemala, March 12–16. www.oardc.ohio-state.edu/tomato/ TBRT%202001%20Abstracts.pdf.
  44. Momotaz, A., Scott, J. W., & Schuster, D. J. (2005). Searching for silverleaf whitefly and geminivirus resistance genes from Lycopersicon hirsutum accession LA 1777. Acta Hort. 695, 417–422. Monforte, A. J. & Tanskley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculen- tum genetic background: a tool for gene mapping and gene discovery. Genome 43, 803–813.Google Scholar
  45. Morales, F. J. & Anderson, P. K. (2001). The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch. Virol. 146, 415–441.CrossRefPubMedGoogle Scholar
  46. Moustafa, S. E. (1991). Tomato cultivation and breeding program for tomato yellow leaf curl virus. Resistance of the tomato to TYLCV. In H. Laterrot & C. Trousse (Eds.), Proceedings of the Seminar of EEC Contract DGXII-TS2-A-055 F (CD) Partners. Montfavet-Avignon, France:INRA-Station de’Amelioration des Plantes Maraicheres, pp. 6–8.Google Scholar
  47. Moustafa, S. E. & Nakhla, M. K. (1990). An attempt to develop a new tomato variety resistant to tomato yellow leaf curl virus (TYLCV). Assiut J. Agric. Sci. 21, 167–184.Google Scholar
  48. Mueller, L. A., Solow, T. H., Taylor, N., Skwarecki, B., Buels, R., Binns, J., Lin, C. W., Wright, M. H., Ahrens, R., Wang, Y., Herbst, E. V., Keyder, V. R., Menda, N., Zamir, D., & Tanksley, S. D. (2005). The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol. 138, 1310–1317.CrossRefPubMedGoogle Scholar
  49. Nakhla, M. K., Sorenson, A., Mejía, L., Ramírez, P., Karkashian, J. P., & Maxwell, D. P. (2005). Molecular characterization of tomato-infecting begomoviruses in Central America and development of DNA-based detection methods. Acta Hortic. 695, 277–288.Google Scholar
  50. Navot, N., Pichersky, R., Zeidan, M., Zamir, D., & Czosnek, H. (1991). Tomato yellow leaf curl virus: a whitefly-transmitted geminivirus with a single genomic component. Virology 185, 151–161.CrossRefPubMedGoogle Scholar
  51. Padidam, M., Beachy, R. N., & Fauquet, C. M. (1999). A phage single-stranded DNA (ssDNA) binding protein complements ssDNA accumulation of a geminivirus and interferes with viral movement. J. Virol. 73, 1609–1616.PubMedGoogle Scholar
  52. Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. 2. The tomato yellow leaf curl virus - A review. Sci. Hortic. (Ámsterdam) 67, 151–196.CrossRefGoogle Scholar
  53. Picó, B., Sifres, A., Elía, M., Díez, M. J., & Nuez, F. (2000). Searching for new resistance sources to tomato yellow leaf curl virus within a highly variable wild Lycopersicon genetic pool. Acta Physiol. Plant. 22, 344–350.CrossRefGoogle Scholar
  54. Picó, B., Herraiz, J., Ruiz, J. J., & Nuez, F. (2002). Widening the genetic basis of virus resistance in tomato. Sci. Hortic. 94, 73–89.CrossRefGoogle Scholar
  55. Pietersen, G. & Smith, M. F. (2002). Tomato yellow leaf virus resistant tomatoes show resistance to Tomato curly stunt virus. Plant Dis. 86, 528–534.CrossRefGoogle Scholar
  56. Pilowsky, M. & Cohen, S. (1974). Inheritance of resistance to tomato yellow leaf curl virus in tomatoes. Phytopathology 64, 632–635.Google Scholar
  57. Pilowsky, M. & Cohen, S. (1990). Tolerance to tomato yellow leaf curl virus derived from Lycopersicon peruvianum. Plant Dis. 74, 248–250.CrossRefGoogle Scholar
  58. Pinón, M., Gómez, O., & Cornide, M. T. (2005). RFLP analysis of Cuban tomato breeding lines with resistance to Tomato yellow leaf curl virus. Acta Hortic. 695, 273–276.Google Scholar
  59. Purcell, S., Cherny, S. S., & Sham, P.C. (2003). Genetic power calculator: design of linkage and asso- ciation genetic mapping studies of complex traits. Bioinformatics 19, 149–150.CrossRefPubMedGoogle Scholar
  60. Salati, R., Nahkla, M. K. Rojas, M. R., Guzman, P., Jaquez, J., Maxwell, D. P., & Gilbertson, R. L. (2002). Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92, 487–496.CrossRefPubMedGoogle Scholar
  61. Salus, M. S. & Maxwell, D. P. (2006). Application of molecular techniques for detection of disease resistance genes in tomato breeding lines for Guatemala. www.plantpath.wisc.edu/InVirLab/docs/ Research%20proposal%20for%20Mindy.pdf.
  62. Scott, J. W. (2001). Geminivirus resistance derived from Lycopersicum chilense accessions LA1932, LA1938, and LA2779. In Proceedings of the Breeders Round Table, Antigua, Guatemala, March 12–16. www.oardc.ohio-state.edu/tomato/ TBRT%202001%20Abstracts.pdf.
  63. Scott, J. W. & Schuster, D. J. (1991). Screening of accessions for resistance to Florida tomato geminivirus. Rept. Tomato Genet. Coop. 41, 48–50.Google Scholar
  64. Scott, J. W., Stevens, M. R., Barten, J. H. M., Thome, C. R., Polston, J. E., Schuster, D. J., & Serra, C. A. (1996). Introgression of resistance to whitefly-transmitted geminiviruses from Lycopersicon chilense to tomato. In D. Gerling & R.T. Mayer (Eds.), Bemisia 1995: Taxonomy, Biology, Damage Control and Management. Andover, UK: Intercept, pp. 357–367.Google Scholar
  65. Scott, J. W. (2007). Breeding for resistance to viral pathogens. In M. K. Razdan & A. K. Mattoo (Eds.), Genetic Improvement of Solanaceous Crops, vol 2: Tomato. Enfield, New Hampshire, USA: Science Publishers, US. pp. 447–474.Google Scholar
  66. Vidavsky, F., Lapidot, M., & Czosnek, H. (2006). Pile up of resistance genes to TYLVC found in wild species to produce resistant cultivars. In Proceedings of the Tomato Breeders Roundtable, Tampa, FL, USA, May 7–12. roundtable06.ifas.ufl.edu/Schedule.htm.
  67. Vidavsky, F. & Czosnek, H. (1998). Tomato breeding lines immune and tolerant to tomato yellow leaf curl virus (TYLCV) issued from Lycopersicon hirsutum. Phytopathology 88, 910–914. Vidavsky, F., Leviatov S, Milo J, Rabinowitch H. D, Kedar N., & Czosnek H (1998) Behavior of tol- erant tomato breeding lines (Lycopersicon esculentum) originated from three different sources (L. peruvianum, L. pimpinellifolium and L. chilense) upon early controlled inoculation by tomato yel-low leaf curl virus. Plant Breed. 117, 165–169.CrossRefGoogle Scholar
  68. Williamson, V. M., Ho, J. Y., Wu, F. F., Miller, N., & Kaloshian, I. (1994). A PCR-based marker tightly linked to the nematode resistance gene, Mi, in Tomato. Theor. Appl. Genet. 87, 757–763.CrossRefGoogle Scholar
  69. Zakay, Y., Navot, N., Zeidan, M., Kedar, N., Rabinowitch, H., Czosnek, H., & Zamir, D. (1991). Screening of Lycopersicon accessions for resistance to tomato yellow leaf curl virus: presence of viral DNA and symptom development. Plant Dis. 75, 279–281.Google Scholar
  70. Zamir, D., Michelson, I., Zakay, Y., Navot, N., Zeidan, N., Sarfatti, M., Eshed, Y., Harel, E., Pleban, T., van-Oss, H., Kedar, N., Rabinowitch, H. D., & Czosnek, H. (1994). Mapping and introgres-sion of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor. Appl. Genet. 88, 141–146.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • P. W. Daniels
    • 1
  • K. Halpin
    • 1
  • A. Hyatt
    • 1
  • D. Middleton
    • 1
  1. 1.CSIRO Livestock IndustriesAustralian Animal Health LaboratoryGeelongAustralia

Personalised recommendations