Skip to main content

multi-Multi-Objective Optimization Problem and Its Solution by a MOEA

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4403))

Included in the following conference series:

Abstract

In this paper, a new type of Multi-Objective Problems (MOPs) is introduced and formulated. The new type is an outcome of a motivation to find optimal solutions for different MOPs, which are coupled through communal components. Therefore, in such cases a multi-Multi-Objective Optimization Problem (m-MOOP) has to be considered. The solution to the m-MOOP is defined and an approach to search for it by applying an EMO algorithm sequentially is presented. This method, although not always resulting in the individual MOPs’ Pareto fronts, nevertheless gives solutions to the m-MOOP problem in hand. Several measures that allow the assessment of the introduced approach are offered. To demonstrate the approach and its applicability, academic examples as well as a "real-life," engineering example, are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fellini, R., Kokkolaras, M., Panos, P.Y., Perez-Duarte, A.: Platform Selection Under Performance Loss Constraints in Optimal Design of Product Families. In: Proceedings of DETC.02 ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference Montreal, Canada, September 29-October 2 (2002)

    Google Scholar 

  2. Robertson, D., Ulrich, K.: Planning Product Platforms. Sloan Management Review 39(4), 19–31 (1998)

    Google Scholar 

  3. Lehnerd, A.P.: Revitalizing the Manufacture and Design of Mature Global Products. In: Guile, B.R., Brooks, H. (eds.) Technology and Global Industry: Companies and Nations in the World Economy, pp. 49–64. National Academy Press, Washington (1987)

    Google Scholar 

  4. Simpson, T.W., D’Souza, B.S.: Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm. Journal of Concurrent Engineering: Research and Applications 12(2), 119–129 (2004)

    Google Scholar 

  5. Project IST-2001-34820 Advanced Real-Time Systems, Component-based Design and Integration Platforms W1.A2.N1.Y1 (2003 ), http://www.artist-embedded.org/

  6. Weyuker, E.J.: Testing Component-Based Software: A Cautionary Tale. IEEE Software 15(5), 54–59 (1998)

    Article  Google Scholar 

  7. Dellarocas, C.: The synthesis environment for component based software development. In: Proceedings of 8th International Workshop on Software Technology and Engineering Practice, London, UK, July (1997)

    Google Scholar 

  8. Mattson, C.A., Messac, A.: Pareto Frontier Based Concept Selection under Uncertainty, with Visualization. Optimization and Engineering 6, 85–115 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Van Veldhuizen, D.A., Lamont, G.B.: Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computation 8(2), 125–147 (2000)

    Article  Google Scholar 

  10. Pareto, V.: Cours D’Economic Politique, Volume 1 and 2 Frouge, Lausanne (1896)

    Google Scholar 

  11. Steuer, R.E.: Multiple Criteria Optimization. In: Theory Computations and Applications, John Wiley & Sons, New York (1986)

    Google Scholar 

  12. Marler, R.T., Arora, J.S.: Review of Multi-Objective Optimization Concepts and Methods for Engineering. Technical Report Number ODL-01.01, University of Iowa, Optimal Design Laboratory, Iowa City, IA (2003)

    Google Scholar 

  13. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423 (1993)

    Google Scholar 

  14. Goldberg, D.E.: Genetic algorithms in search. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  15. Coello, C.A.C.: Recent Trends in Evolutionary Multiobjective Optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances And Applications, pp. 7–32. Springer, London (2005)

    Chapter  Google Scholar 

  16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: ’A Fast and Elitist Multiobjective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  17. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. J. Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  18. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multi-objective optimization. Evolutionary Computation 10(3), 263–282 (2002)

    Article  Google Scholar 

  19. Bosman, P.A.N., Thierend, D.: The balance between Proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2) (2003)

    Google Scholar 

  20. Nelson, S.A., Parkinson, M.B., Papalambros, P.Y.: Multicriteria Optimization in Product Platform Design, Journal of Mechanical Design 123(2), 199–204 (2001)

    Article  Google Scholar 

  21. Rai, R., Allada, V.: Modular product family design: agent-based Pareto-optimization and quality loss function-based post-optimal analysis. International Journal of Production Research 41(17) (2003)

    Google Scholar 

  22. Simpson, T.W., D’Souza, B.S.: Assessing Variable Levels of Platform Commonality Within a Product Family Using a Multiobjective Genetic Algorithm. Journal of Concurrent Engineering: Research and Applications 12(2), 119–129 (2004)

    Article  Google Scholar 

  23. Avigad, G., Moshaiov, A., Brauner, N.: Towards a general tool for mechatronic design. In: The Proc. of the 2003 IEEE CSS Conference on Control Applications, CCA 2003, Istanbul, Turkey, June 23-25, IEEE, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Avigad, G. (2007). multi-Multi-Objective Optimization Problem and Its Solution by a MOEA. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics