Skip to main content

Improving Computational Mechanics Optimum Design Using Helper Objectives: An Application in Frame Bar Structures

  • Conference paper
Evolutionary Multi-Criterion Optimization (EMO 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4403))

Included in the following conference series:

Abstract

Considering evolutionary multiobjective algorithms for improving single objective optimization problems is focused in this work on introducing the concept of helper objectives in a computational mechanics problem: the constrained mass minimization in real discrete frame bar structures optimum design. The number of different cross-section types of the structure is proposed as a helper objective. It provides a discrete functional landscape where the non-dominated frontier is constituted of a low number of discrete isolated points. Therefore, the population diversity treatment becomes a key point in the multiobjective approach performance. Two different-sized test cases, four mutation rates and two codifications (binary and gray) are considered in the performance analysis of four algorithms: single-objective elitist evolutionary algorithm, NSGAII, SPEA2 and DENSEA. Results show how an appropriate multiobjective approach that makes use of the proposed helper objective outperforms the single objective optimization in terms of average final solutions and enhanced robustness related to mutation rate variations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbass, H., Deb, K.: Searching under multi-evolutionary pressures. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 391–405. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Aguirre, H., Tanaka, K.: Selection, Drift, Recombination, and Mutation in Multiobjective Evolutionary Algorithms on Scalable MNK-Landscapes. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 355–369. Springer, Heidelberg (2005)

    Google Scholar 

  3. Berry, A., Vamplew, P.: The combative accretion model – multiobjective optimisation without explicit Pareto ranking. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 77–91. Springer, Heidelberg (2005)

    Google Scholar 

  4. Bleuer, S., Brack, M., Thiele, L., Zitzler, E.: Multiobjective Genetic Programming: Reducing Bloat using SPEA2. In: Proceedings of Congress on Evolutionary Computation, pp. 536–543 (2001)

    Google Scholar 

  5. Bui, L., Branke, J., Abbass, H.: Multiobjective optimization for dynamic environments. In: 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2349–2356. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  6. Bui, L., Branke, J., Abbass, H.: Diversity as a Selection Pressure in Dynamic Environments. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO, vol. 2, pp. 1557–1558. ACM Press, New York (2005)

    Chapter  Google Scholar 

  7. Coello, C., Van Veldhuizen, D., Lamont, G.: Evolutionary Algorithms for solving multi-objective problems. GENA Series. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  8. Coello, C.: Evolutionary Multiobjective Optimization: A Historical View of the Field. IEEE Computational Intelligence Magazine 1(1), 28–36 (2006)

    Article  Google Scholar 

  9. Corne, D., Deb, K., Fleming, P., Knowles, J.: The Good of the Many Outweighs the Good of the One: Evolutionary Multi-Objective Optimization. IEEE coNNections, 1-1, 9-13 (2003)

    Google Scholar 

  10. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. Series in Systems and Optimization. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  11. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm NSGAII. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  12. Dhingra, A.K., Lee, B.H.: A Genetic Algorithm Approach to Single and Multiobjective Structural Optimization with Discrete-Continuous Variables. International Journal for Numerical Methods in Engineering 37, 4059–4080 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Galante, M.: Genetic Algorithms as an approach to optimize real-world trusses. International Journal Numerical Methods Engineering 39, 361–382 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gero, J.S., Louis, S.J.: Improving Pareto Optimal Designs using Genetic Algorithms. Microcomputers in Civil Engineering, 10-4, 241-249 (1995)

    Google Scholar 

  15. Goldberg, D.E., Samtani, M.P.: Engineering Optimization via genetic algorithm. In: Proceedings Ninth Conference on Electronic Computation, pp. 471–482. ASCE, New York (1986)

    Google Scholar 

  16. Greiner, D.: Multiobjective optimization of metallic frames using evolutionary algorithms. phD Thesis, Departments of Computer Science, Applied Mathematics and Civil Engineering, University of Las Palmas de Gran Canaria, Spain (in Spanish) (2005)

    Google Scholar 

  17. Greiner, D., Emperador, J.M., Winter, G.: Single and Multiobjective Frame Optimization by Evolutionary Algorithms and the Auto-adaptive Rebirth Operator. Computer Methods in Applied Mechanics and Engineering 193, 3711–3743 (2004)

    Article  MATH  Google Scholar 

  18. Greiner, D., Emperador, J.M., Winter, G.: Multiobjective Optimisation of Bar Structures by Pareto-GA. In: European Congress on Computational Methods in Applied Sciences and Engineering, CIMNE (2000)

    Google Scholar 

  19. Greiner, D., Emperador, J.M., Winter, G.: Enhancing the multiobjective optimum design of structural trusses with evolutionary algorithms using DENSEA. In: 44th AIAA (American Institute of Aeronautics and Astronautics) Aerospace Sciences Meeting and Exhibit, paper AIAA-2006-1474 (2006)

    Google Scholar 

  20. Greiner, D., Winter, G., Emperador, J.M.: A comparative study about the mutation rate in multiobjective frame structural optimization using evolutionary algorithms. In: Schilling, R., et al. (eds.) Proceedings of the 6th Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal Problems, Munich, September (2005)

    Google Scholar 

  21. Greiner, D., Winter, G., Emperador, J.M., Galván, B.: Gray coding in evolutionary multicriteria optimization: Application in frame structural optimum design. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 576–591. Springer, Heidelberg (2005)

    Google Scholar 

  22. Greiner, D., Winter, G., Emperador, J.M.: Searching for an efficient method in multiobjective frame optimisation using evolutionary algorithms. In: Computational Solid and Fluid Mechanics, Massachusetts Institute of Technology Conference on Computational Fluid and Solid Mechanics 2003, pp. 2285–2290. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  23. Greiner, D., Winter, G., Emperador, J.M.: Optimising Frame Structures by different strategies of GA, Finite Elements in Analysis and Design, Elsevier, 37-5, 381-402 (2001)

    Google Scholar 

  24. Grierson, D.E., Pak, W.H.: Optimal sizing, geometrical and topological design using a genetic algorithm. Structural Optimization, 6-3, 151-159 (1993)

    Google Scholar 

  25. Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99–107 (1992)

    Article  Google Scholar 

  26. Handl, J., Knowles, J.: Bias, Proxies and Solution Selection in Multiobjective Optimization. In: PPSN Workshop on Multiobjective Problem Solving from Nature, Reykjavik, Iceland (2006)

    Google Scholar 

  27. Handl, J., Knowles, J., Kell, D.: Multiobjective optimization in computational biology and bioinformatics. IEEE Transactions on computational biology and bioinformatics (in press)

    Google Scholar 

  28. Hernández Ibáñez, S.: Structural Optimum Design Methods. Colección Seinor. Colegio de Ingenieros de Caminos, Canales y Puertos, Madrid (in Spanish) (1990)

    Google Scholar 

  29. Jensen, M.T.: Guiding Single-Objective Optimization using Multi-Objective Methods. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 268–279. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Jensen, M.T.: Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation. Journal of Mathematical Modelling and Algorithms 3(4), 323–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  31. de Jong, E., Watson, R., Pollack, J.: Reducing bloat and promoting diversity using multi-objective methods. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO, pp. 11–18 (2001)

    Google Scholar 

  32. Knowles, J., Watson, R., Corne, D.: Reducing Local Optima in Single-Objective Problems by Multiobjectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001)

    Google Scholar 

  33. Landa Silva, J.D., Burke, E.K.: Using Diversity to guide the search in Multi-Objective Optimization. In: Coello Coello, C.A., Lamont, G.B. (eds.) Applications of Multi-Objective Evolutionary Algorithms. Advances in Natural Computation, vol. 1, pp. 727–751. World Scientific, Singapore (2004)

    Google Scholar 

  34. Liu, M.: Seismic design of steel moment-resisting frame structures using multi objective optimization. Earthquake Spectra, Vol. 21-2, 389-414 (2005)

    Google Scholar 

  35. Mumford, C.: Simple population replacement strategies for a steady-state multiobjective evolutionary algorithm. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1389–1400. Springer, Heidelberg (2004)

    Google Scholar 

  36. Nojima, Y., Narukawa, K., Kaige, S., Ishibushi, H.: Effects of Removing Overlapping Solutions on the Performance of the NSGAII Algorithm. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 341–354. Springer, Heidelberg (2005)

    Google Scholar 

  37. Rajeev, S., Krishnamoorthy, C.S.: Discrete Optimization of Structures using Genetic Algorithms. Journal of Structural Engineering, vol. 118-5, 1233-1250 (1992)

    Google Scholar 

  38. Rao, S.S.: Genetic Algorithmic Approach for Multiobjective Optimization of Structures. ASME Annual Winter Meeting, Structures and Controls Optimization, vol. AD-38, 29-38 (1993)

    Google Scholar 

  39. Valenzuela, C.: A simple evolutionary algorithm for multi-objective optimization (SEAMO). In: Congress on Evolutionary Computation-CEC, pp. 717–722 (2002)

    Google Scholar 

  40. Whitley, D., Rana, S., Heckendorn, R.: Representation Issues in Neighborhood Search and Evolutionary Algorithms. In: Quagliarella, D., Périaux, J., Poloni, C., Winter, G. (eds.) Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pp. 39–57. John Wiley & Sons, Chichester (1997)

    Google Scholar 

  41. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, CIMNE, pp. 95–100 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shigeru Obayashi Kalyanmoy Deb Carlo Poloni Tomoyuki Hiroyasu Tadahiko Murata

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Greiner, D., Emperador, J.M., Winter, G., Galván, B. (2007). Improving Computational Mechanics Optimum Design Using Helper Objectives: An Application in Frame Bar Structures. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds) Evolutionary Multi-Criterion Optimization. EMO 2007. Lecture Notes in Computer Science, vol 4403. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70928-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70928-2_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70927-5

  • Online ISBN: 978-3-540-70928-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics