Skip to main content

Weak Fourier-Schur Sampling, the Hidden Subgroup Problem, and the Quantum Collision Problem

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

Schur duality decomposes many copies of a quantum state into subspaces labeled by partitions, a decomposition with applications throughout quantum information theory. Here we consider applying Schur duality to the problem of distinguishing coset states in the standard approach to the hidden subgroup problem. We observe that simply measuring the partition (a procedure we call weak Schur sampling) provides very little information about the hidden subgroup. Furthermore, we show that under quite general assumptions, even a combination of weak Fourier sampling and weak Schur sampling fails to identify the hidden subgroup. We also prove tight bounds on how many coset states are required to solve the hidden subgroup problem by weak Schur sampling, and we relate this question to a quantum version of the collision problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)

    Article  MathSciNet  Google Scholar 

  2. Bacon, D., Childs, A.M., van Dam, W.: From optimal measurement to effi- cient quantum algorithms for the hidden subgroup problem over semidirect product groups. In: Proc. 46th FOCS, pp. 469–478 (2005)

    Google Scholar 

  3. Bacon, D., Childs, A.M., van Dam, W.: Optimal measurements for the dihedral hidden subgroup problem. Chicago J. Th. Comp. Sci. 2 (2006)

    Google Scholar 

  4. Bacon, D., Chuang, I.L., Harrow, A.W.: Efficient quantum circuits for Schur and Clebsch-Gordan transforms. quant-ph/0407082

    Google Scholar 

  5. Bacon, D., Chuang, I.L., Harrow, A.W.: The quantum Schur transform: I. Efficient qudit circuits. To appear in Proc. 18th SODA, available at quant-ph/0601001 (2007)

    Google Scholar 

  6. Barenco, A., et al.: Stabilisation of quantum computations by symmetrisation. SIAM J. Comput (1997) (1541)-1557

    Google Scholar 

  7. Beals, R.: Quantum computation of Fourier transforms over symmetric groups. In: Proc. 29th STOC, pp. 48–53 (1997)

    Google Scholar 

  8. Boneh, R., Lipton, R.: Quantum cryptanalysis of hidden linear functions. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 424–437. Springer, Heidelberg (1995)

    Google Scholar 

  9. Brassard, G., Høyer, P., Tapp, A.: Quantum cryptanalysis of hash and clawfree functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Buhrman, H., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16) (2001)

    Google Scholar 

  11. Childs, A.M., Wocjan, P.: On the quantum hardness of solving isomorphism problems as nonabelian hidden shift problems, quant-ph/0510185

    Google Scholar 

  12. Coppersmith, D.: An approximate Fourier transform useful in quantum factoring. Technical Report RC 19642, IBM Research Division, Yorktown Heights, NY, quant-ph/0201067 (1994)

    Google Scholar 

  13. Christandl, M., Mitchison, G.: The spectra of density operators and the Kronecker coefficients of the symmetric group. Commun. Math. Phys. 261(3), 789–797 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ettinger, M., Høyer, P.: A quantum observable for the graph isomorphism problem, quant-ph/9901029

    Google Scholar 

  15. Ettinger, M., Høyer, P., Knill, E.: Hidden subgroup states are almost orthogonal, quant-ph/9901034

    Google Scholar 

  16. Friedl, K., et al.: Hidden translation and orbit coset in quantum computing. In: Proc. 35th STOC, pp. 1–9 (2003)

    Google Scholar 

  17. Gavinsky, D.: Quantum solution to the hidden subgroup problem for poly-near- Hamiltonian groups. Quant. Inf. Comp. 4, 229–235 (2004)

    MathSciNet  Google Scholar 

  18. Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  19. Grigni, M., et al.: Quantum mechanical algorithms for the nonabelian hidden subgroup problem. Combinatorica 24, 137–154 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th STOC, pp. 212–219 (1996)

    Google Scholar 

  21. Hallgren, S.: Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem. In: Proc. 34th STOC, pp. 653–658 (2002)

    Google Scholar 

  22. Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number field. In: Proc. 37th STOC, pp. 468–474 (2005)

    Google Scholar 

  23. Hales, L., Hallgren, S.: An improved quantum Fourier transform algorithm and applications. In: Proc. 41st FOCS, pp. 515–525 (2000)

    Google Scholar 

  24. Hallgren, S., et al.: Limitations of quantum coset states for graph isomorphism. In: Proc. 38th STOC, pp. 604–617 (2006)

    Google Scholar 

  25. Hallgren, S., Russell, A., Ta-Shma, A.: The hidden subgroup problem and quantum computation using group representations. In: Proc. 32nd STOC, pp. 627–635 (2000)

    Google Scholar 

  26. Harrow, A.W.: Applications of coherent classical communication and the Schur transform to quantum information theory. Ph.D. thesis, MIT (2005)

    Google Scholar 

  27. Hayashi, M., Matsumoto, K.: Quantum universal variable-length source coding. Phys. Rev. A 66, 022311 (2002)

    Google Scholar 

  28. Ivanyos, G., Magniez, F., Santha, M.: Efficient quantum algorithms for some instances of the non-abelian hidden subgroup problem. Int. J. Found. Comp. Sci. 14, 723–739 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Kerov, S.: Gaussian limit for the Plancherel measure of the symmetric group. Comptes Rendus Acad. Sci. Paris, Sér. I 316, 303–308 (1993)

    MATH  MathSciNet  Google Scholar 

  30. Keyl, M., Werner, R.F.: Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311 (2001)

    Article  MathSciNet  Google Scholar 

  31. Kuperberg, G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem. SIAM J. Comput. 35, 170–188 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Moore, C., Rockmore, D.N., Russell, A.: Generic quantum Fourier transforms. In: Proc. 15th SODA, pp. 778–787 (2004)

    Google Scholar 

  33. Moore, C., et al.: The hidden subgroup problem in affine groups: Basis selection in Fourier sampling. In: Proc. 15th SODA, pp. 1113–1122 (2004)

    Google Scholar 

  34. Moore, C., Russell, A., Schulman, L.J.: The symmetric group defies strong Fourier sampling. In: Proc. 46th FOCS, pp. 479–490 (2005)

    Google Scholar 

  35. Radhakrishnan, J., Rötteler, M., Sen, P.: On the power of random bases in Fourier sampling: Hidden subgroup problem in the Heisenberg group. In: Caires, L., et al. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1399–1411. Springer, Heidelberg (2005)

    Google Scholar 

  36. Regev, O.: Quantum computation and lattice problems. In: Proc. 43rd FOCS, pp. 520–529 (2002)

    Google Scholar 

  37. Regev, O.: A subexponential time algorithm for the dihedral hidden subgroup problem with polynomial space, quant-ph/0406151

    Google Scholar 

  38. Schmidt, A., Vollmer, U.: Polynomial time quantum algorithm for the computation of the unit group of a number field. In: Proc. 37th STOC, pp. 475–480 (2005)

    Google Scholar 

  39. Sen, P.: Random measurement bases, quantum state distinction and applications to the hidden subgroup problem, quant-ph/0512085

    Google Scholar 

  40. Serre, J.P.: Linear Representations of Finite Groups. Graduate Texts in Mathematics, vol. 42. Springer, New York (1977)

    MATH  Google Scholar 

  41. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  42. Stanley, R.P.: Theory and application of plane partitions. Studies in Appl. Math. 1, 167-187 and 259-279 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Childs, A.M., Harrow, A.W., Wocjan, P. (2007). Weak Fourier-Schur Sampling, the Hidden Subgroup Problem, and the Quantum Collision Problem. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics