Skip to main content

The Polynomially Bounded Perfect Matching Problem Is in NC 2

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

The perfect matching problem is known to be in P, in randomized NC, and it is hard for NL. Whether the perfect matching problem is in NC is one of the most prominent open questions in complexity theory regarding parallel computations.

Grigoriev and Karpinski [GK87] studied the perfect matching problem for bipartite graphs with polynomially bounded permanent. They showed that for such bipartite graphs the problem of deciding the existence of a perfect matchings is in NC 2, and counting and enumerating all perfect matchings is in NC 3. For general graphs with a polynomially bounded number of perfect matchings, they show both problems to be in NC 3.

In this paper we extend and improve these results. We show that for any graph that has a polynomially bounded number of perfect matchings, we can construct all perfect matchings in NC 2. We extend the result to weighted graphs.

Supported by DFG grant Scho 302/7-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational Complexity 8, 99–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Allender, E., Reinhardt, K., Zhou, S.: Isolating, matching, and counting: uniform and nonuniform upper bounds. Journal of Computer and System Sciences 59, 164–181 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berkowitz, S.: On computing the determinant in small parallel time using a small number of processors. Information Processing Letters 18, 147–150 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chiu, A., Davida, G., Litow, B.: Division in logspace-uniform NC 1. RAIRO Theoretical Informatics and Applications 35, 259–276 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cook, S.: A taxonomy of problems with fast parallel algorithms. Information and Control 64, 2–22 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  6. Damm, C.: DET = L(#L). Technical Report Informatik-Preprint 8, Fachbereich Informatik der Humboldt-Universität zu Berlin (1991)

    Google Scholar 

  7. Dahlhaus, E., Hajnal, P., Karpinski, M.: On the parallel complexity of hamiltonian cycles and matching problem in dense graphs. Journal of Algorithms 15, 367–384 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dahlhaus, E., Karpinski, M.: The matching problem for strongly chordal graphs is in NC. Technical Report 855-CS, University of Bonn (1986)

    Google Scholar 

  9. Edmonds, J.: Maximum matching and a polyhedron with 0-1 vertices. Journal of Research National Bureau of Standards 69, 125–130 (1965)

    MATH  MathSciNet  Google Scholar 

  10. Grigoriev, D., Karpinski, M.: The matching problem for bipartite graphs with polynomially bounded permanent is in NC. In: 28th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 166–172. IEEE Computer Society Press, Los Alamitos (1987)

    Google Scholar 

  11. Hoang, T.M., Mahajan, M., Thierauf, T.: On the Bipartite Unique Perfect Matching Problem. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 453–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Kastelyn, P.W.: Graph theory and crystal physics. In: Harary, F. (ed.) Graph Theory and Theoretical Physics, pp. 43–110. Academic Press, London (1967)

    Google Scholar 

  13. Karpinski, M., Rytter, W.: Fast Parallel Algorithms for Graph Matching Problems. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  14. Lev, G., Pippenger, M., Valiant, L.: A fast parallel algorithm for routing in permutation networks. IEEE Transactions on Computers 30, 93–100 (1981)

    MATH  MathSciNet  Google Scholar 

  15. Mahajan, M., Subramanya, P., Vinay, V.: A combinatorial algorithm for pfaffians. In: Asano, T., et al. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 134–143. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Mulmuley, K., Vazirani, U., Vazirani, V.: Matching is as easy as matrix inversion. In: 19th ACM Symposium on Theory of Computing, pp. 345–354. ACM Press, New York (1987)

    Google Scholar 

  17. Toda, S.: Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept. of Computer Science and Information Mathematics, University of Electro-Communications, Chofu-shi, Tokyo 182, Japan (1991)

    Google Scholar 

  18. Valiant, L.: Why is boolean complexity theory difficult. In: Paterson, M.S. (ed.) Boolean Function Complexity. London Mathematical Society Lecture Notes Series, vol. 169, Cambridge University Press, Cambridge (1992)

    Google Scholar 

  19. Vazirani, V.: NC algorithms for computing the number of perfect matchings in K 3,3-free graphs and related problems. Information and computation 80(2), 152–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: 6th IEEE Conference on Structure in Complexity Theory, pp. 270–284. IEEE Computer Society Press, Los Alamitos (1991)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Agrawal, M., Hoang, T.M., Thierauf, T. (2007). The Polynomially Bounded Perfect Matching Problem Is in NC 2 . In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics