Skip to main content

Why Almost All k-Colorable Graphs Are Easy

  • Conference paper
STACS 2007 (STACS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4393))

Included in the following conference series:

Abstract

Coloring a k-colorable graph using k colors (k ≥ 3) is a notoriously hard problem. Considering average case analysis allows for better results. In this work we consider the uniform distribution over k-colorable graphs with n vertices and exactly cn edges, c greater than some sufficiently large constant. We rigorously show that all proper k-colorings of most such graphs are clustered in one cluster, and agree on all but a small, though constant, number of vertices. We also describe a polynomial time algorithm that finds a proper k-coloring for (1 − o(1))-fraction of such random k-colorable graphs, thus asserting that most of them are “easy”. This should be contrasted with the setting of very sparse random graphs (which are k-colorable whp), where experimental results show some regime of edge density to be difficult for many coloring heuristics. One explanation for this phenomena, backed up by partially non-rigorous analytical tools from statistical physics, is the complicated clustering of the solution space at that regime, unlike the more “regular” structure that denser graphs possess. Thus in some sense, our result rigorously supports this explanation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., Friedgut, E.: A sharp threshold for k-colorability. Random Struct. Algorithms 14(1), 63–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achlioptas, D., Molloy, M.: Almost all graphs with 2.522n edges are not 3-colorable. Elec. Jour. Of Comb. 6(1), R29 (1999)

    MathSciNet  Google Scholar 

  3. Achlioptas, D., Moore, C.: Almost all graphs with average degree 4 are 3-colorable. In: STOC ’02, pp. 199–208 (2002)

    Google Scholar 

  4. Alon, N., Kahale, N.: A spectral technique for coloring random 3-colorable graphs. SIAM J. on Comput. 26(6), 1733–1748 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ben-Sasson, E., Bilu, Y., Gutfreund, D.: Finding a randomly planted assignment in a random 3CNF. Manuscript (2002)

    Google Scholar 

  6. Blum, A., Spencer, J.: Coloring random and semi-random k-colorable graphs. J. of Algorithms 19(2), 204–234 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bollobás, B.: The chromatic number of random graphs. Combin. 8(1), 49–55 (1988)

    Article  MATH  Google Scholar 

  8. Böttcher, J.: Coloring sparse random k-colorable graphs in polynomial expected time. In: Proc. 30th MFCS, pp. 156–167 (2005)

    Google Scholar 

  9. Braunstein, A., et al.: Constraint satisfaction by survey propagation. In: Computational Complexity and Statistical Physics (2005)

    Google Scholar 

  10. Chen, H.: An algorithm for sat above the threshold. In: 6th International Conference on Theory and Applications of Satisfiability Testing, pp. 14–24 (2003)

    Google Scholar 

  11. Coja-Oghlan, A.: Coloring semirandom graphs optimally. In: Díaz, J., et al. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 383–395. Springer, Heidelberg (2004)

    Google Scholar 

  12. Dyer, M.E., Frieze, A.M.: The solution of some random NP-hard problems in polynomial expected time. J. Algorithms 10(4), 451–489 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feige, U., Kilian, J.: Zero knowledge and the chromatic number. J. Comput. and Syst. Sci. 57(2), 187–199 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feige, U., Kilian, J.: Heuristics for semirandom graph problems. J. Comput. and Syst. Sci. 63(4), 639–671 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feige, U., Mossel, E., Vilenchik, D.: Complete convergence of message passing algorithms for some satisfiability problems. In: RANDOM, pp. 339–350 (2006)

    Google Scholar 

  16. Flaxman, A.: A spectral technique for random satisfiable 3CNF formulas. In: Proc. 14th ACM-SIAM Symp. on Discrete Algorithms, pp. 357–363. ACM Press, New York (2003)

    Google Scholar 

  17. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18(1), 67–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization, 2nd edn. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1993)

    MATH  Google Scholar 

  19. Krivelevich, M., Vilenchik, D.: Semirandom models as benchmarks for coloring algorithms. In: ANALCO, pp. 211–221 (2006)

    Google Scholar 

  20. Kučera, L.: Expected behavior of graph coloring algorithms. In: Karpinski, M. (ed.) FCT 1977. LNCS, vol. 56, pp. 447–451. Springer, Heidelberg (1977)

    Google Scholar 

  21. Łuczak, T.: The chromatic number of random graphs. Combin. 11(1), 45–54 (1991)

    Article  MATH  Google Scholar 

  22. Mulet, R., et al.: Coloring random graphs. Phys. Rev. Lett. 89(26), 268701 (2002)

    Article  MathSciNet  Google Scholar 

  23. Prömel, H., Steger, A.: Random l-colorable graphs. Random Structures and Algorithms 6, 21–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Turner, J.S.: Almost all k-colorable graphs are easy to color. J. Algorithms 9(1), 63–82 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang Thomas Pascal Weil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Coja-Oghlan, A., Krivelevich, M., Vilenchik, D. (2007). Why Almost All k-Colorable Graphs Are Easy. In: Thomas, W., Weil, P. (eds) STACS 2007. STACS 2007. Lecture Notes in Computer Science, vol 4393. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70918-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70918-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70917-6

  • Online ISBN: 978-3-540-70918-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics