Skip to main content

Research Methods in Arbuscular Mycorrhizal Fungi

  • Chapter
Advanced Techniques in Soil Microbiology

Part of the book series: Soil Biology ((SOILBIOL,volume 11))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Fattah Gamal M (2001) Measurement of the viability of arbuscular-mycorrhizal fungi using three different stains; relation to growth and metabolic activities of soybean plants. Microbiol Res 156:359–367

    Article  PubMed  CAS  Google Scholar 

  • Alexander M (1982) Most probable number method for microbial populations. In: Page AL, Miller RH, Keene DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, pp 815–820

    Google Scholar 

  • Al-Karaki GN, Al-Raddad A, Clark RB (1998) Water stress and mycorrhizal isolate effects on growth and nutrient acquisition of wheat. J Plant Nutr 21:891–902

    CAS  Google Scholar 

  • Allen MF, Allen EB, Friese CF (1989) Responses of the nonmycotrophic plant Salsola kali to invasion by vesicular ± arbuscular mycorrhizal fungi. New Phytol 111:45–49

    Article  Google Scholar 

  • Ames RN, Ingham ER, Reid CPP (1982) Ultraviolet-induced autofluorescence of arbuscular mycorrhizal root infections: an alternative to cleaning and staining methods for assessing infections. Can J Microbiol 28:351–355

    Article  CAS  Google Scholar 

  • Azcon R, Ocampo JA (1981) Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol 87:677–685

    Article  CAS  Google Scholar 

  • Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998a) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–338

    Article  Google Scholar 

  • Bago B, Azcón-Aguilar C, Piché Y (1998b) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown undermonoxenic conditions. Mycologia 90:52–62

    Article  Google Scholar 

  • Baláz M, Vosátka M (2001) A novel inserted membrane technique for studies of mycorrhizal extraradical mycelium. Mycorrhiza 11:291–296

    Article  CAS  Google Scholar 

  • Baylis GTS (1969) Host treatment and spore production by endogone. NZ J Bot 7:173–174

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bi YL, Li XL, Christie P, Hu ZQ, Wong MH (2003) Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere 50:863–869

    Article  PubMed  CAS  Google Scholar 

  • Biermann B, Linderman RG (1981) Quantifiying vesicular arbuscular mycorrhizae: a proposed method towards standardization. New Phytol 87:63–67

    Article  Google Scholar 

  • Boddington CL, Bassett EE, Jakobsen I, Dodd JC (1999) Comparison of techniques for extraction and quantification of extraradical mycelium of arbuscular mycorrhizal fungi in soils. Soil Biol Biochem 31:479–482

    Article  CAS  Google Scholar 

  • Borowicz VA (1997) A fungal root symbiont modifies plant resistance to an insect herbivore. Oecologia 112, 534–542

    Article  Google Scholar 

  • Bowen GD (1984) Future directions in plantation nutrition research. In: Bowen GD, Nambiar EKS (eds) Nutrition of plantation forest. Academic, London, pp 489–505

    Google Scholar 

  • Brundrett MC, Juniper S (1995) Non-destructive assessment of germination and single-spore isolation of VAM fungi and production of pot cultures from single spores. Soil Biol Biochem 27:85–91

    Article  CAS  Google Scholar 

  • Brundrett MC, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. (ACIAR monograph 32) ACIAR, Canberra

    Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular-arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter AH (eds) Advances in ecological research, vol 26. Academic, London, pp 171–313

    Google Scholar 

  • Butcher DN (1980) The culture of isolated roots. In: Ingram DS, Helgelson JP (eds) Tissue culture methods for plant pathologists. Blackwell Scientific, Oxford, pp 13–17

    Google Scholar 

  • Butcher DN, Street HE (1964) Excised root culture. Bot Rev 30:513–586

    CAS  Google Scholar 

  • Calvet C, Pera J, Barea MJ (1993) Growth response of marigold (Tagetes erecta L.) to inoculation with Glomus mosseae, Trichoderma aureoviride and Pythium ultimum in a peat-per-lite mixture. Plant Soil 148:1–6

    Article  Google Scholar 

  • Clarke CA, Mosse B (1978) Recovery of VA mycorrhizal spores after germination. Rothamsted Exp Stn Rep 1978:239

    Google Scholar 

  • Coombes RD, Haveland-Smith RB (1982) A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mut Res 98:101–248

    Google Scholar 

  • Cunningham JL (1972) A miracle mounting fluid for permanent whole-mounts of microfungi. Mycologia 64:906–911

    Article  Google Scholar 

  • Daniels BA, Graham SO (1976) Effects of nutrition and soil extracts on germination of GIomus mosseue spores. Mycologia 68:108–116

    Article  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1996) In vitro mass production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res 100:1237–1242

    Google Scholar 

  • Dodd JC (1994) Approaches to the study of extraradical mycelium of arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 147–166

    Google Scholar 

  • Doncaster CC (1962) A counting dish for nematodes. Nematologica 7:334–337

    Article  Google Scholar 

  • Douds DD, Schenck NC (1990) Crypreservation of spores of vesicular-arbuscular mycorrhizal fungi. New Phytol 115:667–674

    Article  Google Scholar 

  • Douds DD Jr, Nagahashi G, Pfeffer PE, Reider C, Kayser W (2006) On-farm production of AM fungus inoculum in mixtures of compost and vermiculite. Bioresour Technol 97:809–918

    Article  PubMed  CAS  Google Scholar 

  • Douds DD, Schenck NC (1990) Increased sporulation of vesicular-arbuscular mycorrhizal fungi by manipulation of nutrient regimes. Appl Environ Microbiol 56:413–418

    PubMed  CAS  Google Scholar 

  • Douds DD Jr (2002) Increased spore production by Glomus intraradices in the split-plate monoxenic culture system by repeated harvest, gel replacement, and resupply of glucose to the mycorrhiza. Mycorrhiza 12:163–167

    Article  PubMed  CAS  Google Scholar 

  • Douds DD, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005a) On-farm production and utilization of mycorrhizal fungus inoculum. Can J Plant Sci 85:15–21

    Google Scholar 

  • Douds DD, Nagahashi G, Pfeffer PE, Kayser WM, Reider C (2005b) On-farm production of AM fungus inoculum in compost-vermiculite mixtures. Appl Environ Microbiol 71:15–21

    Google Scholar 

  • Dugassa DG, Grunewaldt-Stocker G, Schönbeck F (1995) Growth of Glomus intraradices and its effect on linseed (Linum usitatissimum L.) in hydroponic culture. Mycorrhiza 5:279–282

    Google Scholar 

  • Enkhtuya B, Rydlová J, Vosátka M (2002) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and manmade habitats. Appl Soil Ecol 14:201–211

    Article  Google Scholar 

  • Ferguson JJ, Menge JA (1982) The influence of light intensity and artificially extended photoperiod upon infection and sporulation of Glomus fasciculatus on sudangrass and on root exudation of sudan grass. New Phytol 92:183–191

    Article  Google Scholar 

  • Ferguson JJ, Woodhead SH, Ross JP, Daniels BA (1982) Production of endomycorrhizal inoculum. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathology Society, St. Paul, pp 47–59

    Google Scholar 

  • Filion M, St-Arnaud M, Fortin JA (1999) Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms. New Phytol 141:525–533

    Article  Google Scholar 

  • Fisher RA, Yates F (1963) Statistical tables for biological, agricultural and medical research. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Fortin JA, Guillaume B, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Furlan V, Fortin JA (1973) Formation of endomycorrhizae by endogone calospora on Allium cepa under three temperature regimes. Nat Can 100:467–447

    Google Scholar 

  • Fusconi A, Gnavi E, Trotta A, Berta G (1999) Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol 142:505–516

    Article  Google Scholar 

  • Gardner RO (1975) An overview of botanical clearing technique. Stain Technol 50:99–105

    PubMed  CAS  Google Scholar 

  • Gaur A, Adholeya A, Mukerji KG (1998) A comparison of AM fungi inoculants using Capsicum and Polianthes in marginal soil amended with organic matter. Mycorrhiza 7:307–312

    Article  Google Scholar 

  • Gaur A, Adholeya A (1994) Estimation of VAM spores in soil: a modified method. Mycorrhiza News 6:10–11

    Google Scholar 

  • Gaur A, Adholeya A (2000) Effects of the particle size of soil-less substrates upon AM fungus inoculum production. Mycorrhiza 10:43–48

    Article  Google Scholar 

  • Gaur A, Adholeya A (2002) Arbuscular-mycorrhizal inoculation of five tropical fodder crops and inoculum production in marginal soil amended with organic matter. Biol Fertil Soil 35:214–218

    Article  CAS  Google Scholar 

  • Gehring CA, Whitham TG (1991) Herbivore-driven mycorrhizal mutualism in insect-suscetible pinyon pine. Nature 353:556–557

    Article  Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal endogone extracted from soil by wet seiving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Google Scholar 

  • Hall IR (1977) Species and mycorrhizal infections of New Zealand Endogonaceae. Trans Br Mycol Soc 68:341–356

    Google Scholar 

  • Hanssen JF, Thingstad TF, Gohson J (1974) Evaluation of hyphal lengths and fungal biomass in soil by a membrane filter method. Oikos 25:102–107

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London, pp 284

    Google Scholar 

  • Heinzemann J, Weritz J (1990) Rockwool: a new carrier system for mass multiplication of vesicular-arbuscular mycorrhizal fungi. Angew Bot 64:271–274

    Google Scholar 

  • Hepper CM (1984) Isolation and culture of VA mycorrhizal (VAM) fungi. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhiza. CRC Press, Boca Raton, pp 95–112

    Google Scholar 

  • Jabaji-Hare S, Perumalla CJ, Kendrick WB (1984) Auto fluorescence of vesicles, arbuscules, and intercellular hyphae of a vesicular arbuscular fungus in leek (Allium porrum) roots. Can J Bot 62:2665–2669

    Google Scholar 

  • Janos DP (1980) Mycorrhizae influence tropical succession. Trop Succ 12:56–64

    Google Scholar 

  • Jarstfer AG, Sylvia DM (1992) Inoculum production and inoculation strategies for vesicular-arbuscular mycorrhizal fungi. In: Meting B (ed) Soil microbial ecology; application in agriculture and environmental management. Dekker, New York, pp 349–377

    Google Scholar 

  • Jarstfer AG, Sylvia DM (1995) Aeroponic culture of VAM fungi. In: Varma A, Hock B (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 521–559

    Google Scholar 

  • Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant soil systems. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser, Basel, pp 101–115

    Google Scholar 

  • Khalil S, Loynachan TE, Tabatabai MA (1994) Mycorrhizal dependency and nutrient uptake by improved and unimproved corn and soybean cultivars. Agron J 86:949–958

    Article  Google Scholar 

  • Khan AG (2001) Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ Int 26:417–423

    Article  PubMed  CAS  Google Scholar 

  • Koide R, Li M, Lewis J, Irby C (1988) Role of mycorrhizal infection in the growth and reproduction of wild vs cultivated plants. I. Wild vs cultivated oats. Oecologia 77:537–543

    Article  Google Scholar 

  • Kormanik PP, McGraw AC (1982) Quantification of vesicular±arbuscular mycorrhizae in plant roots. In: Schenk NC (ed) Methods and principles of mycorrhizal research. American Phytopathology Society, St Paul, pp 37–45

    Google Scholar 

  • Koske RE, Testier B (1983) A convenient permanent slide mounting medium. Mycol Soc Am Newsl 34:59

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Google Scholar 

  • Laurent FM, Leea S, Tham FY, Jie H, Diem HG (1999) Aeroponic production of Acacia mangium saplings inoculated with AM fungi for reforestation in the tropics. For Ecol Manag 122:199–207

    Article  Google Scholar 

  • Madan RC, Pankhurst BH, Smith H (2002) Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol Biochem 34:125–128

    Article  CAS  Google Scholar 

  • Mallesha BC, Bagyaraj DJ, Pai G (1992) Perlite-soilrite mix as a carrier for mycorrhiza and rhizobia to inoculate Leucaena leucocephala. Leucaena Res Rep 13:32–33

    Google Scholar 

  • Manjunath A, Habte M (1991) Root morphological characteristics of host species having distinct mycorrhizal dependency. Can J Bot 69:671–676

    Google Scholar 

  • Mathur N, Vyas A (2000) Influence of arbuscular mycorrhizae on biomass production, nutrient uptake and physiological changes in Ziziphus mauritana Lam. under water stress. J Arid Environ 45:191–195

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Menge JA, Steirle D, Bagyaraj DJ, Johnson ELV, Leonard RT (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytol 80:575–578

    Article  CAS  Google Scholar 

  • Merryweather JW, Fitter AH (1991) A modified method for elucidating the structure of the fungal partner in a vesicular arbuscular mycorrhiza. Mycol Res 95:1435–1437

    Article  Google Scholar 

  • Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytology 132:307–311

    Article  CAS  Google Scholar 

  • Mohammad A, Khan AG, Kuek C (2000) Improved aeroponic culture of inocula of arbuscular mycorrhizal fungi. Mycorrhiza 9:337–339

    Article  Google Scholar 

  • Morton JB (1991) INVAM newsletters, vol 1–5. West Virginia University, Morgantown

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae et Paraglomaceae, with two new genera, Archaeospora and Paraglomus, based on concordant molecular and morphological caracters. Mycologia 93:181–195

    Article  Google Scholar 

  • Mosse B, Thompson JP (1984) Vesicular-arbuscular endomycorrhizal inoculum production. I. Exploratory experiments with beans (Phaseolus vulgaris) in nutrient flow culture. Can J Bot 62:1523–1530

    CAS  Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular-arbuscular infections in root-organ cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipids and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99:623–625

    CAS  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Google Scholar 

  • Plenchette C, Declerck C, Diop TA, Strullu DG (1996) Infectivity of monoaxenic subcultures of the arbuscular mycorrhizal fungus Glomus versiforme associated with Ri-T-DNA-transformed carrot root. Appl Microbiol Biotechnol 46:545–548

    Article  CAS  Google Scholar 

  • Plenchette C, Fortin JA, Furlan V (1983) Growth responses of several plant species to mycorrhizae in a soil of moderate P-fertility. Part I. Mycorrhizal dependency under field conditions. Plant Soil 70:199–209

    Article  CAS  Google Scholar 

  • Porter WM (1979) The most probable number method for enumerating infective propagules of vesicular arbuscular mycorrhizal fungi in soil. Aust J Soil Res 17:515–519

    Article  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000) Ancestral lineages of arbuscular mycorrhizal fungi (Glomales). Mol Phyl Evol 14:276–284

    Article  CAS  Google Scholar 

  • Redecker D, Thierfelder H, Werner D (1995) A new cultivation system for arbuscular mycorrhizal fungi on glass beads. Angew Bot 69:189–191

    Google Scholar 

  • Riker AJ, Banfield WM, Wright WH, Keitt GW, Sagen HE (1930) Studies on infectious hairy root of nursery apple trees. J Agric Res 41:507–540

    Google Scholar 

  • Schaffer GF, Peterson R (1993) Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4:29–35

    Article  Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi. Synergistic, Gainesville

    Google Scholar 

  • Schubert A, Marzachí C, Mazziteli M, Cravero MC, Bonfante-Fasolo P (1987) Development of total and viable extraradical mycelium in the vesicular-arbuscular mycorrhizal fungus Glomus clarum Nicol. & Schenck. New Phytol 107:183–190

    Article  Google Scholar 

  • Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Sieverding E, Barea JM (1991) Perspectives de la inoculation de sistemas de production vegetal con hongos formadores de micorrizas VA. In: Olivares J, Barea JM (eds) Fijacion y movilizacion biologica de nutrients. (Coleccion nuevas tendencias, vol II) CSIC, Madrid, pp 221–245

    Google Scholar 

  • Smith GW, Skipper HD (1979) Comparison of method to extract spores of vesicular arbuscular mycorrhizal fungi. Soil Sci Soc Am J 43:722–725

    Article  Google Scholar 

  • Smith SE, Barker SJ (2002) Plant phosphate transporter genes help harness the nutritional benefits of arbuscular mycorrhizal symbiosis. Trends Plant Sci 75:189–190

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Sreenivasa MN, Bagyaraj DJ (1988) Selection of a suitable host for mass multiplication of Glomus fasciculatum. Plant Soil 106:289–290

    Article  Google Scholar 

  • Staddon PL, Fitter AH (2001) The differential vitality of intraradical mycorrhizal structures and its implications. Soil Biol Biochem 33:129–132

    Article  CAS  Google Scholar 

  • Strullu DG (1991) Les relations entre les plantes et les champignons. In: Strullu DG, Garbaye J, Perrin R, Plenchette C (eds) Les mycorhizes des arbres et plantes cultivees. Lavoisier, Paris, pp 9–49

    Google Scholar 

  • Strullu DG, Romand C (1986) Méthode d’obtention d’endomycorhizes à vésicules et arbuscules en conditions axéniques. CR Acad Sci Paris Sci Vie 303:245–250

    Google Scholar 

  • Strullu DG, Romand C (1987) Culture axénique de vésicules isolées à partir d’endomycorhizes et ré-association in vitro à des racines de tomate. CR Acad Sci Paris Sci Vie 305:15–19

    Google Scholar 

  • Subramanian KS, Charest C, Dwyer LM, Hamilton RI (1997) Effects of arbuscular mycorrhizae on leaf water potencial, sugar content, and P content during drought and recovery of maize. Can J Bot 75:1582–1591

    CAS  Google Scholar 

  • Sylvia DM (1994) Vesicular-arbuscular mycorrhizal (VAM) fungi. In: SSSA (ed) Methods of soil analysis, part 2. Microbiological and biochemical properties. (SSSA book series, no 5) Soil Science Society of America, Madison, pp 351–378

    Google Scholar 

  • Sylvia DM, Hubbell DH (1986) Growth and sporulation of vesicular-arbuscular mycorrhizal fungi in aeroponic and membrane systems. Symbiosis 1:259–267

    Google Scholar 

  • Tepfer D (1989) Ri T-DNA from Agrobacterium rhizogenes: a source of genes having applications in rhizosphere biology and plant development, ecology and evolution. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, vol 3. McGraw-Hill, New York, pp 294–342

    Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular endomycorrhizal infections. Mycol Res 97:245–250

    CAS  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché P (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 6:5004–5007

    Google Scholar 

  • Vilariño A, Arines J, Schüepp H (1993) Extraction of vesicular-arbuscular mycorrhizal mycelium from sand samples. Soil Biol Biochem 25:99–100

    Article  Google Scholar 

  • Vivas A, Marulanda M, Mez G, Barea JM, Azcon R (2003) Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levels. Soil Biol Biochem 35:987–996

    Article  CAS  Google Scholar 

  • Whitbeck JL (2001) Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica 33:303–311

    Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. Cattel, Lancaster

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gaur, A., Varma, A. (2007). Research Methods in Arbuscular Mycorrhizal Fungi. In: Varma, A., Oelmüller, R. (eds) Advanced Techniques in Soil Microbiology. Soil Biology, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70865-0_25

Download citation

Publish with us

Policies and ethics