Skip to main content

Understanding the Role of Metal Ions in RNA Folding and Function: Lessons from RNase P, a Ribonucleoprotein Enzyme

  • Chapter
Non-Protein Coding RNAs

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

There is a large and rapidly growing literature relating RNA function to metal ion identity and concentration; however, due to the complexity and large number of interactions it remains a significant experimental challenge to tie the interactions of individual ions to specific aspects of RNA function. Investigation of the ribonculeopro-tein enzyme RNase P function has assisted in defining characteristics of RNA—metal ion interactions and provided a useful model system for understanding RNA catalysis and ribonucleoprotein assembly. The goal of this chapter is to review progress in understanding the physical basis of functional metal ion interactions with P RNA and relate this progress to the development of our understanding of RNA metal ion interactions in general. The research results reviewed here encompass: (1) Determination of the contribution of divalent metal ion binding to specific aspects of enzyme function, (2) Identification of individual metal ion binding sites in P RNA and their contribution to function, and (3) The effect of protein binding on RNA—metal ion affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman S (2007) A view of RNase P. Mol Biosyst 3:604–607

    Article  Google Scholar 

  • Anderson VE, Ruszczycky MW, Harris ME (2006) Activation of oxygen nucleophiles in enzyme catalysis. Chem Rev 106:3236–3251

    Article  Google Scholar 

  • Bai Y, Greenfeld M, Travers KJ, Chu VB, Lipfert J, Doniach S, Herschlag D (2007) Quantitative and comprehensive decomposition of the ion atmosphere around nucleic acids. J Am Chem Soc 129:14981–14988

    Article  Google Scholar 

  • Baird NJ, Fang XW, Srividya N, Pan T, Sosnick TR (2007) Folding of a universal ribozyme: the ribonuclease P RNA. Q Rev Biophys 40:113–161

    Article  Google Scholar 

  • Batey RT, Doudna JA (2002) Structural and energetic analysis of metal ions essential to SRP signal recognition domain assembly. Biochemistry 41:11703–11710

    Article  Google Scholar 

  • Batey RT, Williamson JR (1998) Effects of polyvalent cations on the folding of an rRNA three- way junction and binding of ribosomal protein S15. RNA 4:984–997

    Article  Google Scholar 

  • Beebe JA, Fierke CA (1994) A kinetic mechanism for cleavage of precursor tRNA(Asp) catalyzed by the RNA component of Bacillus subtilis ribonuclease P. Biochemistry 33:10294–10304

    Article  Google Scholar 

  • Beebe JA, Kurz JC, Fierke CA (1996) Magnesium ions are required by Bacillus subtilis ribonucle-ase P RNA for both binding and cleaving precursor tRNAAsp. Biochemistry 35:10493–10505

    Article  Google Scholar 

  • Biswas R, Ledman DW, Fox RO, Altman S, Gopalan V (2000) Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. J Mol Biol 296:19–31

    Article  Google Scholar 

  • Brannvall M, Kirsebom LA (1999) Manganese ions induce miscleavage in the Escherichia coli RNase P RNA- catalyzed reaction. J Mol Biol 292:53–63

    Article  Google Scholar 

  • Brannvall M, Mikkelsen NE, Kirsebom LA (2001) Monitoring the structure of Escherichia coli RNase P RNA in the presence of various divalent metal ions. Nucleic Acids Res 29:1426–1432

    Article  Google Scholar 

  • Brannvall M, Pettersson BM, Kirsebom LA (2003) Importance of the +73/294 interaction in Escherichia coli RNase P RNA substrate complexes for cleavage and metal ion coordination.J Mol Biol 325:697–709

    Article  Google Scholar 

  • Brannvall M, Kikovska E, Kirsebom LA (2004) Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Nucleic Acids Res 32:5418–5429

    Article  Google Scholar 

  • Brown RS, Hingerty BE, Dewan JC, Klug A (1983) Pb(II)-catalysed cleavage of the sugar-phosphate backbone of yeast tRNAPhe—implications for lead toxicity and self-splicing RNA. Nature 303:543–546

    Article  ADS  Google Scholar 

  • Buck AH, Dalby AB, Poole AW, Kazantsev AV, Pace NR (2005a) Protein activation of a ribozyme: the role of bacterial RNase P protein. EMBO J 24:3360–3368

    Article  Google Scholar 

  • Buck AH, Kazantsev AV, Dalby AB, Pace NR (2005b) Structural perspective on the activation of RNAse P RNA by protein. Nat Struct Mol Biol 12:958–964

    Google Scholar 

  • Busch S, Kirsebom LA, Notbohm H, Hartmann RK (2000) Differential role of the intermolecular base-pairs G292-C(75) and G293- C(74) in the reaction catalyzed by Escherichia coli RNase P RNA. J Mol Biol 299:941–951

    Article  Google Scholar 

  • Caprara MG, Myers CA, Lambowitz AM (2001) Interaction of the Neurospora crassa mitochon-drial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain.Thermodynamic analysis and the role of metal ions. J Mol Biol 308:165–190

    Article  Google Scholar 

  • Cassano AG, Anderson VE, Harris ME (2002) Evidence for direct attack by hydroxide in phos-phodiester hydrolysis. J Am Chem Soc 124:10964–10965

    Article  Google Scholar 

  • Cassano AG, Anderson VE, Harris ME (2004a) Analysis of solvent nucleophile isotope effects:evidence for concerted mechanisms and nucleophilic activation by metal coordination in nonen-zymatic and ribozyme-catalyzed phosphodiester hydrolysis. Biochemistry 43:10547–10559

    Article  Google Scholar 

  • Cassano AG, Anderson VE, Harris ME (2004b) Understanding the transition states of phosphodi-ester bond cleavage: insights from heavy atom isotope effects. Biopolymers 73:110–129

    Article  Google Scholar 

  • Cate JH, Hanna RL, Doudna JA (1997) A magnesium ion core at the heart of a ribozyme domain.Nat Struct Biol 4:553–558

    Article  Google Scholar 

  • Christian E (2006). Identification and characterization of metal ion binding to RNA by thiophylic metal ion rescue. In: Hartmann K, Binderief A, Schon A, Westhof E (eds.) Handbook of RNA biochemistry. Wiley-VCH, New York. pp. 319–341

    Google Scholar 

  • Christian EL, Yarus M (1993) Metal coordination sites that contribute to structure and catalysis in the group I intron from Tetrahymena. Biochemistry 32:4475–4480

    Article  Google Scholar 

  • Christian EL, Kaye NM, Harris ME (2000) Helix P4 is a divalent metal ion binding site in the conserved core of the ribonuclease P ribozyme. RNA 6:511–519

    Article  Google Scholar 

  • Christian EL, Kaye NM, Harris ME (2002a) Evidence for a polynuclear metal ion binding site in the catalytic domain of ribonuclease P RNA. EMBO J 21:2253–2262

    Article  Google Scholar 

  • Christian EL, Zahler NH, Kaye NM, Harris ME (2002b) Analysis of substrate recognition by the ribonucleoprotein endonuclease RNase P. Methods 28:307–322

    Article  Google Scholar 

  • Christian EL, Smith KM, Perera N, Harris ME (2006) The P4 metal binding site in RNase P RNA affects active site metal affinity through substrate positioning. RNA 12:1463–1467

    Article  Google Scholar 

  • Ciesiolka J, Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1994) Lead-ion-induced cleavage of RNase P RNA. Eur J Biochem 219:49–56

    Article  Google Scholar 

  • Cleland WW (1995) Isotope effects: determination of enzyme transition state structure. Methods Enzymol 249:341–373

    Article  Google Scholar 

  • Cohn M, Hu A (1978) Isotopic (18O) shift in 31P nuclear magnetic resonance applied to a study of enzyme-catalyzed phosphate—phosphate exchange and phosphate (oxygen)—water exchange reactions. Proc Natl Acad Sci U S A 75:200–203

    Article  ADS  Google Scholar 

  • Correll CC, Freeborn B, Moore PB, Steitz TA (1997) Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91:705–712

    Article  Google Scholar 

  • Cowan JA (1998) Metal activation of enzymes in nucleic acid biochemistry. Chem Rev 98: 1067–1088

    Article  Google Scholar 

  • Crary SM, Niranjanakumari S, Fierke CA (1998) The protein component of Bacillus subtilis ribonuclease P increases catalytic efficiency by enhancing interactions with the 5′ leadersequence of pre-tRNAAsp. Biochemistry 37:9409–9416

    Article  Google Scholar 

  • Crary SM, Kurz JC, Fierke CA (2002) Specific phosphorothioate substitutions probe the active site of Bacillus subtilis ribonuclease P. RNA 8:933–947

    Article  Google Scholar 

  • Cuzic S, Hartmann RK (2007) A 2′-methyl or 2′-methylene group at G+ 1 in precursor tRNA interferes with Mg2+ binding at the enzyme-substrate interface in E-S complexes of E. coli RNase P. Biol Chem 388:717–726

    Article  Google Scholar 

  • DeRose VJ (2003) Metal ion binding to catalytic RNA molecules. Curr Opin Struct Biol 13:317–324

    Article  Google Scholar 

  • Draper DE (2004) A guide to ions and RNA structure. RNA 10:335–343

    Article  Google Scholar 

  • Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34:221–243

    Article  Google Scholar 

  • Fedor MJ, Williamson JR (2005) The catalytic diversity of RNAs. Nat Rev Mol Cell Biol 6:399–412

    Article  Google Scholar 

  • Fierke CA, Hammes GG (1995) Transient kinetic approaches to enzyme mechanisms. Methods Enzymol 249:3–37

    Article  Google Scholar 

  • Frank DN, Pace NR (1997) In vitro selection for altered divalent metal specificity in the RNase P RNA. Proc Natl Acad Sci U S A 94:14355–14360

    Article  ADS  Google Scholar 

  • Frank DN, Harris ME, Pace NR (1994) Rational design of self-cleaving pre-tRNA-ribonuclease P RNA conjugates. Biochemistry 33:10800–10808

    Article  Google Scholar 

  • Gardiner K, Pace NR (1980) RNase P of Bacillus subtilis has a RNA component. J Biol Chem 255:7507–7509

    Google Scholar 

  • Gardiner KJ, Marsh TL, Pace NR (1985) Ion dependence of the Bacillus subtilis RNase P reaction. J Biol Chem 260:5415–5419

    Google Scholar 

  • Guerrier-Takada C, Altman S (1984a) Catalytic activity of an RNA molecule prepared by transcription in vitro. Science 223:285–286

    Article  ADS  Google Scholar 

  • Guerrier-Takada C, Altman S (1984b) Structure in solution of M1 RNA, the catalytic subunit of ribonuclease P from Escherichia coli. Biochemistry 23:6327–6334

    Article  Google Scholar 

  • Guerrier-Takada C, Haydock K, Allen L, Altman S (1986) Metal ion requirements and other aspects of the reaction catalyzed by M1 RNA, the RNA subunit of ribonuclease P from Escherichia coli. Biochemistry. 25:1509–1515

    Article  Google Scholar 

  • Guo X, Campbell FE, Sun L, Christian EL, Anderson VE, Harris ME (2006) RNA-dependent folding and stabilization of C5 protein during assembly of the E. coli RNase P holoenzyme. J Mol Biol 360:190–203

    Article  Google Scholar 

  • Hardt WD, Schlegl J, Erdmann VA, Hartmann RK (1993) Gel retardation analysis of E. coli M1RNA-tRNA complexes. Nucleic Acids Res. 21:3521–3527

    Article  Google Scholar 

  • Hargittai MR, Musier-Forsyth K (2000) Use of terbium as a probe of tRNA tertiary structure and folding. RNA 6:1672–1680

    Article  Google Scholar 

  • Harris ME, Christian EL (2003) Recent insights into the structure and function of the ribonucleo-protein enzyme ribonuclease P. Curr Opin Struct Biol 13:325–333

    Article  Google Scholar 

  • Harris ME, Pace NR (1995) Identification of phosphates involved in catalysis by the ribozyme RNase P RNA. RNA 1:210–218

    Google Scholar 

  • Hsieh J, Andrews AJ, Fierke CA (2004) Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Biopolymers 73:79–89

    Article  Google Scholar 

  • Hunt HR, Taube H (1959) The relative acidities of H2O18 and H2O16 coordinated to a tripositive ion. J Phys Chem 63:124–125

    Article  Google Scholar 

  • Kaye NM, Christian EL, Harris ME (2002a) NAIM and site-specific functional group modification analysis of RNase P RNA: magnesium dependent structure within the conserved P1-P4 multihelix junction contributes to catalysis. Biochemistry 41:4533–4545

    Article  Google Scholar 

  • Kaye NM, Zahler NH, Christian EL, Harris ME (2002b) Conservation of helical structure contributes to functional metal ion interactions in the catalytic domain of ribonuclease P RNA. J Mol Biol 324:429–442

    Article  Google Scholar 

  • Kazantsev AV, Pace NR (2006) Bacterial RNase P: a new view of an ancient enzyme. Nat Rev Microbiol 4:729–740

    Article  Google Scholar 

  • Kazantsev AV, Krivenko AA, Harrington DJ, Carter RJ, Holbrook SR, Adams PD, Pace NR (2003) High-resolution structure of RNase P protein from Thermotoga maritima. Proc Natl Acad Sci U S A 100:7497–7502

    Article  ADS  Google Scholar 

  • Kikovska E, Brannvall M, Kufel J, Kirsebom LA (2005) Substrate discrimination in RNase P RNA-mediated cleavage: importance of the structural environment of the RNase P cleavage site. Nucleic Acids Res 33:2012–2021

    Article  Google Scholar 

  • Kikovska E, Brannvall M, Kirsebom LA (2006) The exocyclic amine at the RNase P cleavage site contributes to substrate binding and catalysis. J Mol Biol 359:572–584

    Article  Google Scholar 

  • Kirsebom LA (2007) RNase P RNA mediated cleavage: substrate recognition and catalysis. Biochimie 89:1183–1194

    Article  Google Scholar 

  • Kirsebom LA, Svard SG (1994) Base pairing between Escherichia coli RNase P RNA and its substrate. EMBO J 13:4870–4876

    Google Scholar 

  • Kole R, Baer MF, Stark BC, Altman S (1980) E. coli RNAase P has a required RNA component. Cell 19:881–887

    Article  Google Scholar 

  • Kraut DA, Carroll KS, Herschlag D (2003) Challenges in enzyme mechanism and energetics. Annu Rev Biochem 72:517–571

    Article  Google Scholar 

  • Kufel J, Kirsebom LA (1998) The P15-loop of Escherichia coli RNase P RNA is an autonomous divalent metal ion binding domain. RNA 4:777–788

    Article  Google Scholar 

  • Kurz JC, Fierke CA (2000) Ribonuclease P: a ribonucleoprotein enzyme. Curr Opin Chem Biol 4:553–558

    Article  Google Scholar 

  • Kurz JC, Fierke CA (2002) The affinity of magnesium binding sites in the Bacillus subtilis RNase P x pre-tRNA complex is enhanced by the protein subunit. Biochemistry 41:9545–9558

    Article  Google Scholar 

  • Kurz JC, Niranjanakumari S, Fierke CA (1998) Protein component of Bacillus subtilis RNase P specifically enhances the affinity for precursor-tRNAAsp. Biochemistry 37:2393–2400

    Article  Google Scholar 

  • Kuusela S, Lonnberg H (1996) Effect of metal ions on the hydrolytic reactions of nucleosides and their phosphoesters. Met Ions Biol Syst 32:271–300

    Google Scholar 

  • Lonnberg T, Lonnberg H (2005) Chemical models for ribozyme action. Curr Opin Chem Biol 9:665–673

    Article  Google Scholar 

  • Loria A, Pan T (1997) Recognition of the T stem-loop of a pre-tRNA substrate by the ribozyme from Bacillus subtilis ribonuclease P. Biochemistry 36:6317–6325

    Article  Google Scholar 

  • Loria A, Pan T (1998) Recognition of the 5′ leader and the acceptor stem of a pre-tRNA substrate by the ribozyme from Bacillus subtilis RNase P. Biochemistry 37:10126–10133

    Article  Google Scholar 

  • Loria A, Pan T (1999) The cleavage step of ribonuclease P catalysis is determined by ribozyme-substrate interactions both distal and proximal to the cleavage site. Biochemistry 38:8612–8620

    Article  Google Scholar 

  • Loria A, Pan T (2001) Modular construction for function of a ribonucleoprotein enzyme: the catalytic domain of Bacillus subtilis RNase P complexed with B. subtilis RNase P protein. Nucleic Acids Res 29:1892–1897

    Article  Google Scholar 

  • Misra VK, Draper DE (2002) The linkage between magnesium binding and RNA folding. J Mol Biol 317:507–521

    Article  Google Scholar 

  • Moore MJ, Sharp PA (1992) Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256:992–997

    Article  ADS  Google Scholar 

  • Nieboer E (1975). The lanthanide ions as structural probes in biological and model systems. In: Rare earths, F.H. Spedding & A.H. Daane, Eds. Wiley, New York pp. 1–47

    Google Scholar 

  • Niranjanakumari S, Day-Storms JJ, Ahmed M, Hsieh J, Zahler NH, Venters RA, Fierke CA, Getz MM, Andrews AJ, Al-Hashimi HM (2007) Probing the architecture of the B. subtilis RNase P holoenzyme active site by cross-linking and affinity cleavage. RNA 13:521–535

    Article  Google Scholar 

  • Northrop DB (2001) Uses of isotope effects in the study of enzymes. Methods 24:117–124

    Article  Google Scholar 

  • Oh BK, Pace NR (1994) Interaction of the 3′-end of tRNA with ribonuclease P RNA. Nucleic Acids Research. 22:4087–4094

    Article  Google Scholar 

  • Oh BK, Frank DN, Pace NR (1998) Participation of the 3′-CCA of tRNA in the binding of catalytic Mg2+ ions by ribonuclease P. Biochemistry 37:7277–7283

    Article  Google Scholar 

  • Oivanen M, Kuusela S, Lonnberg H (1998) Kinetics and mechanism for the cleavage and isomeri-zation of phosphodiester bonds of RNA by Bronsted acids and bases. Chem Rev 98:961–990

    Article  Google Scholar 

  • Piccirilli JA, Vyle JS, Caruthers MH, Cech TR (1993) Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361:85–88

    Article  ADS  Google Scholar 

  • Pyle AM (2002) Metal ions in the structure and function of RNA. J Biol Inorg Chem 7:679–690

    Article  Google Scholar 

  • Robertson HD, Altman S, Smith JD (1972) Purification and properties of a specific Escherichia coli ribonuclease which cleaves a tyrosine transfer ribonucleic acid presursor. J Biol Chem 247:5243–5251

    Google Scholar 

  • Rox C, Feltens R, Pfeiffer T, Hartmann RK (2002) Potential contact sites between the protein and RNA subunit in the Bacillus subtilis RNase P holoenzyme. J Mol Biol 315:551–560

    Article  Google Scholar 

  • Rueda D, Wick K, McDowell SE, Walter NG (2003) Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochemistry 42:9924–9936

    Article  Google Scholar 

  • Ryder SP, Ortoleva-Donnelly L, Kosek AB, Strobel SA (2000) Chemical probing of RNA by nucleotide analog interference mapping. Methods Enzymol 317:92–109

    Article  Google Scholar 

  • Shan S, Yoshida A, Sun S, Piccirilli JA, Herschlag D (1999) Three metal ions at the active site of the Tetrahymena group I ribozyme. Proc Natl Acad Sci U S A 96:12299–12304

    Article  ADS  Google Scholar 

  • Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  ADS  Google Scholar 

  • Shi H, Moore PB (2000) The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA 6:1091–1105

    Article  Google Scholar 

  • Sigel RK, Pyle AM (2007) Alternative roles for metal ions in enzyme catalysis and the implications for ribozyme chemistry. Chem Rev 107:97–113

    Article  Google Scholar 

  • Sigel RK, Vaidya A, Pyle AM (2000) Metal ion binding sites in a group II intron core. Nat Struct Biol 7:1111–1116

    Article  Google Scholar 

  • Smith D, Pace NR (1993) Multiple magnesium ions in the ribonuclease P reaction mechanism. Biochemistry. 32:5273–5281

    Article  Google Scholar 

  • Smith D, Burgin AB, Haas ES, Pace NR (1992) Influence of metal ions on the ribonuclease P reaction. Distinguishing substrate binding from catalysis. J Biol Chem 267:2429–2436

    Google Scholar 

  • Smith JK, Hsieh J, Fierke CA (2007) Importance of RNA-protein interactions in bacterial ribonu-clease P structure and catalysis. Biopolymers 87:329–338

    Article  Google Scholar 

  • Soukup GA, Breaker RR (1999) Relationship between internucleotide linkage geometry and the stability of RNA. RNA 5:1308–1325

    Article  Google Scholar 

  • Spitzfaden C, Nicholson N, Jones JJ, Guth S, Lehr R, Prescott CD, Hegg LA, Eggleston DS (2000) The structure of ribonuclease P protein from Staphylococcus aureus reveals a unique binding site for single-stranded RNA. J Mol Biol 295:105–115

    Article  Google Scholar 

  • Stahley MR, Strobel SA (2005) Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590

    Article  ADS  Google Scholar 

  • Stahley MR, Strobel SA (2006) RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis. Curr Opin Struct Biol 16:319–326

    Article  Google Scholar 

  • Stahley MR, Adams PL, Wang J, Strobel SA (2007) Structural metals in the group I intron: a ribozyme with a multiple metal ion core. J Mol Biol 372:89–102

    Article  Google Scholar 

  • Stams T, Niranjanakumari S, Fierke CA, Christianson DW (1998) Ribonuclease P protein structure: evolutionary origins in the translational apparatus. Science 280:752–755

    Article  ADS  Google Scholar 

  • Stark BC, Kole R, Bowman EJ, Altman S (1978) Ribonuclease P: an enzyme with an essential RNA component. Proc Natl Acad Sci U S A 75:3717–3721

    Article  ADS  Google Scholar 

  • Stefan LR, Zhang R, Levitan AG, Hendrix DK, Brenner SE, Holbrook SR (2006) MeRNA: a database of metal ion binding sites in RNA structures. Nucleic Acids Res 34:D131–D134

    Article  Google Scholar 

  • Sun L, Harris ME (2007) Evidence that binding of C5 protein to P RNA enhances ribozyme catalysis by influencing active site metal ion affinity. RNA 13:1505–1515

    Article  Google Scholar 

  • Sun L, Campbell FE, Zahler NH, Harris ME (2006) Evidence that substrate-specific effects of C5 protein lead to uniformity in binding and catalysis by RNase P. EMBO J 25:3998–4007

    Article  Google Scholar 

  • Taube H (1954) Use of oxygen-isotope effects in the study of hydration of ions. J Phys Chem 58:523–528

    Article  Google Scholar 

  • Vortler LC, Eckstein F (2000) Phosphorothioate modification of RNA for stereochemical and nterference analyses. Methods Enzymol 317:74–91

    Article  Google Scholar 

  • Warnecke JM, Furste JP, Hardt WD, Erdmann VA, Hartmann RK (1996) Ribonuclease P (RNase ) RNA is converted to a Cd(2+)-ribozyme by a single Rp-phosphorothioate modification in he precursor tRNA at the RNase P cleavage site. Proc Natl Acad Sci U S A 93:8924–8928

    Article  ADS  Google Scholar 

  • Warnecke JM, Held R, Busch S, Hartmann RK (1999) Role of metal ions in the hydrolysis reaction catalyzed by RNase P RNA from Bacillus subtilis. J Mol Biol 290:433–445

    Article  Google Scholar 

  • Wilson TJ, Lilley DM (2002) Metal ion binding and the folding of the hairpin ribozyme. RNA 8:587–600

    Article  Google Scholar 

  • Zahler NH, Sun L, Christian EL, Harris ME (2005) The pre-tRNA nucleotide base and 2′-hydroxyl at N(- 1) contribute to fidelity in tRNA processing by RNase P. J Mol Biol 345:969–985

    Article  Google Scholar 

  • Zito K, Huttenhofer A, Pace NR (1993) Lead-catalyzed cleavage of ribonuclease P RNA as a probe for integrity of tertiary structure. Nucleic Acids Res 21:5916–5920

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harris, M.E., Christian, E.L. (2009). Understanding the Role of Metal Ions in RNA Folding and Function: Lessons from RNase P, a Ribonucleoprotein Enzyme. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_9

Download citation

Publish with us

Policies and ethics