Skip to main content

Group I Ribozymes as a Paradigm for RNA Folding and Evolution

  • Chapter
Book cover Non-Protein Coding RNAs

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

  • 1200 Accesses

Group I ribozymes are an ancient class of RNA catalysts that serve as a paradigm for the self-assembly of complex structures of non-coding RNA. The diversity of subtypes illustrates the modular character of RNA architecture and the potential for the evolution of new functions. The folding mechanisms of group I ribozymes illustrate the hierarchy of folding transitions and the importance of kinetic partitioning among competing folding pathways. Studies on group I splicing factors demonstrate how proteins facilitate the assembly of splicing complexes by stabilizing tertiary interactions between domains and by ATP-dependent cycles of RNA unfolding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA (2004a) Crystal structure of a self-splicing group I intron with both exons. Nature 430:45–50

    Article  ADS  Google Scholar 

  • Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA (2004b) Crystal structure of a group I intron splicing intermediate. RNA 10:1867–1887

    Article  Google Scholar 

  • Atsumi S, Ikawa Y, Shiraishi H, Inoue T (2003) Selections for constituting new RNA-protein interactions in catalytic RNP. Nucleic Acids Res 31:661–669

    Article  Google Scholar 

  • Baird NJ, Srividya N, Krasilnikov AS, Mondragon A, Sosnick TR, Pan T (2006) Structural basis for altering the stability of homologous RNAs from a mesophilic and a thermophilic bacterium. RNA 12:598–606

    Article  Google Scholar 

  • Bartley LE, Zhuang X, Das R, Chu S, Herschlag D (2003) Exploration of the transition state for tertiary structure formation between an RNA helix and a large structured RNA. J Mol Biol 328:1011–1026

    Article  Google Scholar 

  • Basu S, Strobel SA (1999) Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4–P6 domain. RNA 5:1399–1407

    Article  Google Scholar 

  • Basu S, Rambo RP, Strauss-Soukup J, Cate JH, Ferré d'Amare AR, Strobel SA, Doudna JA (1998) A specific monovalent metal ion integral to the AA platform of the RNA tetraloop receptor. Nat Struct Biol 5:986–992

    Article  Google Scholar 

  • Beaudry AA, Joyce GF (1990) Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron. Biochemistry 29:6534–6539

    Article  Google Scholar 

  • Beckert B, Nielsen H, Einvik C, Johansen SD, Westhof E, Masquida B (2008) Molecular modelling of the GIR1 branching ribozyme gives new insight into evolution of structurally related ribozymes. EMBO J 27:667–678

    Article  Google Scholar 

  • Been MD, Cech TR (1986) One binding site determines sequence specificity of Tetrahymena pre-rRNA self-splicing, trans-splicing, and RNA enzyme activity. Cell 47:207–216

    Article  Google Scholar 

  • Bhaskaran H, Russell R (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449:1014–1018

    Article  ADS  Google Scholar 

  • Bokinsky G, Nivon LG, Liu S, Chai G, Hong M, Weeks KM, Zhuang X (2006) Two distinct binding modes of a protein cofactor with its target RNA. J Mol Biol 361:771–784

    Article  Google Scholar 

  • Brion P, Westhof E (1997) Hierarchy and dynamics of RNA folding. Annu Rev Biophys Biomol Struct 26:113–137

    Article  Google Scholar 

  • Brion P, Schroeder R, Michel F, Westhof E (1999) Influence of specific mutations on the thermal stability of the td group I intron in vitro and on its splicing efficiency in vivo: a comparative study. RNA 5:947–958

    Article  Google Scholar 

  • Buchmueller KL, Weeks KM (2003) Near native structure in an RNA collapsed state. Biochemistry 42:13869–13878

    Article  Google Scholar 

  • Buchmueller KL, Webb AE, Richardson DA, Weeks KM (2000) A collapsed, non-native RNA folding state. Nat Struct Biol 7:362–366

    Article  Google Scholar 

  • Burkard ME, Turner DH, Tinoco IJ (1999) The interactions that shape RNA structure. In: Gesteland RF, Cech TR, Atkins JF (eds.) The RNA World, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 233–264

    Google Scholar 

  • Caprara MG, Mohr G, Lambowitz AM (1996a) A tyrosyl-tRNA synthetase protein induces tertiary folding of the group i intron catalytic core. J Mol Biol 257:512–531

    Article  Google Scholar 

  • Caprara MG, Lehnert V, Lambowitz AM, Westhof E (1996b) A tyrosyl-tRNA synthetase recognizes a conserved tRNA-like structural motif in the group I intron catalytic core. Cell 87:1135–1145

    Article  Google Scholar 

  • Caprara MG, Chatterjee P, Solem A, Brady-Passerini KL, Kaspar BJ (2007) An allosteric-feed-back mechanism for protein-assisted group I intron splicing. RNA 13:211–222

    Article  Google Scholar 

  • Cate JH, Hanna RL, Doudna JA (1997) A magnesium ion core at the heart of a ribozyme domain. Nat Struct Biol 4:553–558

    Article  Google Scholar 

  • Cavdar Koc E, Burkhart W, Blackburn K, Moseley A, Spremulli LL (2001) The small subunit of the mammalian mitochondrial ribosome. Identification of the full complement of ribosomal proteins present. J Biol Chem 276:19363–19374

    Article  Google Scholar 

  • Cech TR (1990) Self-splicing of group I introns. Annu Rev Biochem 59:543–568

    Article  Google Scholar 

  • Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496

    Article  Google Scholar 

  • Cech TR, Herschlag D, Piccirilli JA, Pyle AM (1992) RNA catalysis by a group I ribozyme. Developing a model for transition state stabilization. J Biol Chem 267:17479–17482

    Google Scholar 

  • Chatterjee P, Brady KL, Solem A, Ho Y, Caprara MG (2003) Functionally distinct nucleic acid binding sites for a group I intron encoded RNA maturase/DNA homing endonuclease. J Mol Biol 329:239–251

    Article  Google Scholar 

  • Chauhan S, Woodson SA (2008) Tertiary interactions determine the accuracy of RNA folding. J Am Chem Soc 130:1296–1303

    Article  Google Scholar 

  • Chauhan S, Caliskan G, Briber RM, Perez-Salas U, Rangan P, Thirumalai D, Woodson SA (2005) RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme. J Mol Biol 353:1199–1209

    Article  Google Scholar 

  • Chen X, Gutell RR, Lambowitz AM (2000) Function of tyrosyl-tRNA synthetase in splicing group I introns: an induced-fit model for binding to the P4–P6 domain based on analysis of mutations at the junction of the P4–P6 stacked helices. J Mol Biol 301:265–283

    Article  Google Scholar 

  • Cole PE, Crothers DM (1972) Conformational changes of transfer ribonucleic acid. Relaxation kinetics of the early melting transition of methionine transfer ribonucleic acid (Escherichia coli). Biochemistry 11:4368–4374

    Article  Google Scholar 

  • Collins RA, Lambowitz AM (1985) RNA splicing in Neurospora mitochondria. Defective splicing of mitochondrial mRNA precursors in the nuclear mutant cyt18–1. J Mol Biol 184:413–428

    Article  Google Scholar 

  • Craig ME, Crothers DM, Doty P (1971) Relaxation kinetics of dimer formation by self complementary oligonucleotides. J Mol Biol 62:383–401

    Article  Google Scholar 

  • Crothers DM (2001) RNA conformational dynamics. In: Söll D, Nishimura S, Moore P (eds.) RNA, Elsevier, Oxford, UK, pp. 61–70

    Chapter  Google Scholar 

  • Crothers DM, Cole PE, Hilbers CW, Shulman RG (1974) The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol 87:63–88

    Article  Google Scholar 

  • Damberger SH, Gutell RR (1994) A comparative database of group I intron structures. Nucleic Acids Res 22:3508–3510

    Article  Google Scholar 

  • Das R, Travers KJ, Bai Y, Herschlag D (2005) Determining the Mg2+ stoichiometry for folding an RNA metal ion core. J Am Chem Soc 127:8272–8273

    Article  Google Scholar 

  • Das R, Kwok LW, Millett IS, Bai Y, Mills TT, Jacob J, Maskel GS, Seifert S, Mochrie SG, Thiyagarajan P, Doniach S, Pollack L, Herschlag D (2003) The fastest global events in RNA folding: electrostatic relaxation and tertiary collapse of the Tetrahymena ribozyme. J Mol Biol 332:311–319

    Article  Google Scholar 

  • Davies RW, Waring RB, Ray JA, Brown TA, Scazzocchio C (1982) Making ends meet: a model for RNA splicing in fungal mitochondria. Nature 300:719–724

    Article  ADS  Google Scholar 

  • Decatur WA, Einvik C, Johansen S, Vogt VM (1995) Two group I ribozymes with different functions in a nuclear rDNA intron. EMBO J 14:4558–4568

    Google Scholar 

  • Doherty EA, Herschlag D, Doudna JA (1999) Assembly of an exceptionally stable RNA tertiary interface in a group I ribozyme. Biochemistry 38:2982–2990

    Article  Google Scholar 

  • Donahue CP, Yadava RS, Nesbitt SM, Fedor MJ (2000) The kinetic mechanism of the hairpin ribozyme in vivo: influence of RNA helix stability on intracellular cleavage kinetics. J Mol Biol 295:693–707

    Article  Google Scholar 

  • Doudna JA, Cech TR (1995) Self-assembly of a group I intron active site from its component tertiary structural domains. RNA 1:36–45

    Google Scholar 

  • Doudna JA, Cech TR (2002) The chemical repertoire of natural ribozymes. Nature 418:222–228

    Article  ADS  Google Scholar 

  • Downs WD, Cech TR (1996) Kinetic pathway for folding of the Tetrahymena ribozyme revealed by three UV-inducible crosslinks. RNA 2:718–732

    Google Scholar 

  • Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34:221–243

    Article  Google Scholar 

  • Dujon B, Colleaux L, Jacquier A, Michel F, Monteilhet C (1986) Mitochondrial introns as mobile genetic elements: the role of intron-encoded proteins. Basic Life Sci 40:5–27

    Google Scholar 

  • Einvik C, Decatur WA, Embley TM, Vogt VM, Johansen S (1997) Naegleria nucleolar introns contain two group I ribozymes with different functions in RNA splicing and processing. RNA 3:710–720

    Google Scholar 

  • Einvik C, Nielsen H, Westhof E, Michel F, Johansen S (1998) Group I-like ribozymes with a novel core organization perform obligate sequential hydrolytic cleavages at two processing sites. RNA 4:530–541

    Article  Google Scholar 

  • Fang XW, Pan T, Sosnick TR (1999) Mg2+−dependent folding of a large ribozyme without kinetic traps. Nat Struct Biol 6:1091–1095

    Article  Google Scholar 

  • Fang X, Littrell K, Yang XJ, Henderson SJ, Siefert S, Thiyagarajan P, Pan T, Sosnick TR (2000) Mg2+-dependent compaction and folding of yeast tRNAPhe and the catalytic domain of the B. subtilis RNase P RNA determined by small-angle X-ray scattering. Biochemistry 39:11107–11113

    Article  Google Scholar 

  • Fang, XW, Golden, BL, Littrell, K, Shelton, V, Thiyagarajan, P, Pan, T, Sosnick, TR (2001) The thermodynamic origin of the stability of a thermophilic ribozyme. Proc Natl Acad Sci U S A 98:4355–4360

    Article  ADS  Google Scholar 

  • Faye G, Fukuhara H, Grandchamp C, Lazowska J, Michel F, Casey J, Getz GS, Locker J, Rabinowitz M, Bolotin-Fukuhara M, Coen D, Deutsch J, Dujon B, Netter P, Slonimski PP (1973) Mitochondrial nucleic acids in the petite colonie mutants: deletions and repetition of genes. Biochimie 55:779–792

    Article  Google Scholar 

  • Gampel A, Cech TR (1991) Binding of the CBP2 protein to a yeast mitochondrial group I intron requires the catalytic core of the RNA. Genes Dev 5:1870–1880

    Article  Google Scholar 

  • Garcia I, Weeks KM (2004) Structural basis for the self-chaperoning function of an RNA collapsed state. Biochemistry 43:15179–15186

    Article  Google Scholar 

  • Golden BL, Kim H, Chase E (2005) Crystal structure of a phage Twort group I ribozyme-product complex. Nat Struct Mol Biol 12:82–89

    Article  Google Scholar 

  • Grosshans CA, Cech TR (1989) Metal ion requirements for sequence-specific endoribonuclease activity of the Tetrahymena ribozyme. Biochemistry 28:6888–6894

    Article  Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonu-clease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Article  Google Scholar 

  • Guo F, Cech TR (2002) Evolution of Tetrahymena ribozyme mutants with increased structural stability. Nat Struct Biol 9:855–861

    Google Scholar 

  • Guo F, Gooding AR, Cech TR (2004) Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell 16:351–362

    Google Scholar 

  • Guo F, Gooding AR, Cech TR (2006) Comparison of crystal structure interactions and thermodynamics for stabilizing mutations in the Tetrahymena ribozyme. RNA 12:387–395

    Article  Google Scholar 

  • Gutell RR (1996) Comparative sequence analysis and the structure of 16S and 23S rRNA. In: Zimmerman RA, Dahlberg AE (eds.) Ribosomal RNA: structure, evolution, processing, and function in protein biosynthesis. CRC Press, Boca Raton, FL, pp. 111–128

    Google Scholar 

  • Halbreich A, Pajot P, Foucher M, Grandchamp C, Slonimski P (1980) A pathway of cytochrome b mRNA processing in yeast mitochondria: specific splicing steps and an intron-derived circular DNA. Cell 19:321–329

    Article  Google Scholar 

  • Heilman-Miller SL, Thirumalai D, Woodson SA (2001) Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. J Mol Biol 306:1157–1166

    Article  Google Scholar 

  • Hermann T, Auffinger P, Westhof E (1998) Molecular dynamics investigations of hammerhead ribozyme RNA. Eur Biophys J 27:153–165

    Article  Google Scholar 

  • Ho Y, Waring RB (1999) The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing [In Process Citation]. J Mol Biol 292:987–1001

    Article  Google Scholar 

  • Ho Y, Kim SJ, Waring RB (1997) A protein encoded by a group I intron in Aspergillus nidulans directly assists RNA splicing and is a DNA endonuclease [published erratum appears in Proc Natl Acad Sci U S A 1997 Dec 23;94(26):14976]. Proc Natl Acad Sci USA 94:8994–8999

    Article  ADS  Google Scholar 

  • Hopkins JF, Woodson SA (2005) Molecular beacons as probes of RNA unfolding under native conditions. Nucleic Acids Res 33:5763–5770

    Article  Google Scholar 

  • Hsu JL, Rho SB, Vannella KM, Martinis SA (2006) Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles. J Biol Chem 281:23075–23082

    Article  Google Scholar 

  • Huang HR, Rowe CE, Mohr S, Jiang Y, Lambowitz AM, Perlman PS (2005) The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function. Proc Natl Acad Sci USA 102:163–168

    Article  ADS  Google Scholar 

  • Ikawa Y, Naito D, Aono N, Shiraishi H, Inoue T (1999) A conserved motif in group IC3 introns is a new class of GNRA receptor. Nucleic Acids Res 27:1859–1865

    Article  Google Scholar 

  • Ikawa Y, Shiraishi H, Inoue T (2000a) Minimal catalytic domain of a group I self-splicing intron RNA. Nat Struct Biol 7:1032–1035

    Article  Google Scholar 

  • Ikawa Y, Naito D, Shiraishi H, Inoue T (2000b) Structure-function relationships of two closely related group IC3 intron ribozymes from Azoarcus and Synechococcus pre-tRNA. Nucleic Acids Res 28:3269–3277

    Article  Google Scholar 

  • Jackson, SA, Koduvayur, S, Woodson, SA (2006) Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast. RNA 12:2149–2159

    Article  Google Scholar 

  • Jaeger L, Michel F, Westhof E (1994) Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. J Mol Biol 236:1271–1276

    Article  Google Scholar 

  • Jankowsky E, Gross CH, Shuman S, Pyle AM (2001) Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291:121–125

    Article  ADS  Google Scholar 

  • Johansen S, Vogt VM (1994) An intron in the nuclear ribosomal DNA of Didymium iridis codes for a group I ribozyme and a novel ribozyme that cooperate in self-splicing. Cell 76:725–734

    Article  Google Scholar 

  • Johnson TH, Tijerina P, Chadee AB, Herschlag D, Russell R (2005) Structural specificity conferred by a group I RNA peripheral element. Proc Natl Acad Sci USA 102:10176–10181

    Article  ADS  Google Scholar 

  • Kim SH, Cech TR (1987) Three-dimensional model of the active site of the self-splicing rRNA precursor of Tetrahymena. Proc Natl Acad Sci USA 84:8788–8792

    Article  ADS  Google Scholar 

  • Kuo LY, Piccirilli JA (2001) Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns. Biochim Biophys Acta 1522:158–166

    Google Scholar 

  • Kuramitsu S, Ikawa Y, Inoue T (2005) Rational installation of an allosteric effector on a designed ribozyme. Nucleic Acids Symp Ser (Oxf) 2005(49):349–350

    Article  Google Scholar 

  • Kwok LW, Shcherbakova I, Lamb JS, Park HY, Andresen K, Smith H, Brenowitz M, Pollack L (2006) Concordant Exploration of the Kinetics of RNA Folding from Global and Local Perspectives. J Mol Biol 355:282–293

    Article  Google Scholar 

  • Laederach A, Shcherbakova I, Liang MP, Brenowitz M, Altman RB (2006) Local kinetic measures of macromolecular structure reveal partitioning among multiple parallel pathways from the earliest steps in the folding of a large RNA molecule. J Mol Biol 358:1179–1190

    Article  Google Scholar 

  • Laggerbauer B, Murphy FL, Cech TR (1994) Two major tertiary folding transitions of the Tetrahymena catalytic RNA. EMBO J 13:2669–2676

    Google Scholar 

  • Lambowitz AM, Perlman PS (1990) Involvement of aminoacyl-tRNA synthetases and other proteins in group I and group II intron splicing. Trends Biochem Sci 15:440–444

    Article  Google Scholar 

  • Lehnert V, Jaeger L, Michel F, Westhof E (1996) New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. Chem Biol 3:993–1009

    Article  Google Scholar 

  • Lewin AS, Thomas J, Jr., Tirupati HK (1995) Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein. Mol Cell Biol 15:6971–6978

    Google Scholar 

  • Lynch DC, Schimmel PR (1974) Cooperative binding of magnesium to transfer ribonucleic acid studied by a fluorescent probe. Biochemistry 13:1841–1852

    Article  Google Scholar 

  • Margossian SP, Li H, Zassenhaus HP, Butow RA (1996) The DExH box protein Suv3p is a component of a yeast mitochondrial 3′- to-5′ exoribonuclease that suppresses group I intron toxic-ity. Cell 84:199–209

    Article  Google Scholar 

  • McGraw P, Tzagoloff A (1983) Assembly of the mitochondrial membrane system. Characterization of a yeast nuclear gene involved in the processing of the cytochrome b pre-mRNA. J Biol Chem 258:9459–9468

    Google Scholar 

  • Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610

    Article  Google Scholar 

  • Michel F, Jacquier A, Dujon B (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64:867–881

    Article  Google Scholar 

  • Michel F, Hanna M, Green R, Bartel DP, Szostak JW (1989) The guanosine binding site of the Tetrahymena ribozyme. Nature 342:391–395

    Article  ADS  Google Scholar 

  • Michel F, Ellington AD, Couture S, Szostak JW (1990) Phylogenetic and genetic evidence for base-triples in the catalytic domain of group I introns. Nature 347:578–580

    Article  ADS  Google Scholar 

  • Misra, VK, Draper, DE (1998) On the role of magnesium ions in RNA stability. Biopolymers 48:113–135

    Article  Google Scholar 

  • Mohr, G, Zhang, A, Gianelos, JA, Belfort, M, Lambowitz, AM (1992) The neurospora CYT-18 protein suppresses defects in the phage T4 td intron by stabilizing the catalytically active structure of the intron core. Cell 69:483–494

    Article  Google Scholar 

  • Mohr G, Caprara MG, Guo Q, Lambowitz AM (1994) A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme. Nature 370:147–150

    Article  ADS  Google Scholar 

  • Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109:769–779

    Article  Google Scholar 

  • Nielsen H, Westhof E, Johansen S (2005) An mRNA is capped by a 2′, 5′ lariat catalyzed by a group I-like ribozyme. Science 309:1584–1587

    Article  ADS  Google Scholar 

  • Nikolcheva T, Woodson SA (1999) Facilitation of group I splicing in vivo: misfolding of the Tetrahymena IVS and the role of ribosomal RNA exons. J Mol Biol 292:557–567

    Article  Google Scholar 

  • Nilsson J, Sengupta J, Gursky R, Nissen P, Frank J (2007) Comparison of fungal 80 S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments. J Mol Biol 369:429–438

    Article  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci USA 98:4899–4903

    Article  ADS  Google Scholar 

  • Ohuchi SJ, Ikawa Y, Shiraishi H, Inoue T (2002) Modular engineering of a Group I intron ribozyme. Nucleic Acids Res 30:3473–3480

    Article  Google Scholar 

  • Ohuchi SJ, Ikawa Y, Shiraishi H, Inoue T (2004) Artificial modules for enhancing rate constants of a Group I intron ribozyme without a P4-P6 core element. J Biol Chem 279:540–546

    Article  Google Scholar 

  • Pan J, Woodson SA (1998) Folding intermediates of a self-splicing RNA: mispairing of the catalytic core. J Mol Biol 280:597–609

    Article  Google Scholar 

  • Pan J, Woodson SA (1999) The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA. J Mol Biol 294:955–965

    Article  Google Scholar 

  • Pan J, Thirumalai D, Woodson SA (1997) Folding of RNA involves parallel pathways. J Mol Biol 273:7–13

    Article  Google Scholar 

  • Pan J, Deras ML, Woodson SA (2000) Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA. J Mol Biol 296:133–144

    Article  Google Scholar 

  • Paukstelis PJ, Chen JH, Chase E, Lambowitz AM, Golden BL (2008) Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA. Nature 451:94–97

    Article  ADS  Google Scholar 

  • Perez-Salas UA, Rangan P, Krueger S, Briber RM, Thirumalai D, Woodson SA (2004) Compaction of a bacterial group I ribozyme coincides with the assembly of core helices. Biochemistry 43:1746–1753

    Article  Google Scholar 

  • Piccirilli JA, Vyle JS, Caruthers MH, Cech TR (1993) Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature 361:85–88

    Article  ADS  Google Scholar 

  • Pyle AM, Murphy FL, Cech TR (1992) RNA substrate binding site in the catalytic core of the Tetrahymena ribozyme. Nature 358:123–128

    Article  ADS  Google Scholar 

  • Rangan P, Woodson SA (2003) Structural requirement for Mg2+ binding in the group I intron core. J Mol Biol 329:229–238

    Article  Google Scholar 

  • Rangan P, Masquida B, Westhof E, Woodson SA (2003) Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proc Natl Acad Sci USA 100:1574–1579

    Article  ADS  Google Scholar 

  • Reinhold-Hurek B, Shub DA (1992) Self-splicing introns in tRNA genes of widely divergent bacteria. Nature 357:173–176

    Article  ADS  Google Scholar 

  • Russell R, Millett IS, Doniach S, Herschlag D (2000) Small angle X-ray scattering reveals a compact intermediate in RNA folding. Nat Struct Biol 7:367–370

    Article  Google Scholar 

  • Russell R, Zhuang X, Babcock HP, Millett IS, Doniach S, Chu S, Herschlag D (2002a) Exploring the folding landscape of a structured RNA. Proc Natl Acad Sci U S A 99:155–160

    Article  ADS  Google Scholar 

  • Russell R, Millett IS, Tate MW, Kwok LW, Nakatani B, Gruner SM, Mochrie SG, Pande V, Doniach S, Herschlag D, Pollack L (2002b) Rapid compaction during RNA folding. Proc Natl Acad Sci U S A 99:4266–4271

    Article  ADS  Google Scholar 

  • Saldanha R, Ellington A, Lambowitz AM (1996) Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection. J Mol Biol 261:23–42

    Article  Google Scholar 

  • Schultes EA, Bartel DP (2000) One sequence, two ribozymes: implications for the emergence of new ribozyme folds. Science 289:448–452

    Article  ADS  Google Scholar 

  • Sclavi B, Sullivan M, Chance MR, Brenowitz M, Woodson SA (1998) RNA folding at millisecond intervals by synchrotron hydroxyl radical footprinting. Science 279:1940–1943

    Article  ADS  Google Scholar 

  • Seraphin B, Simon M, Boulet A, Faye G (1989) Mitochondrial splicing requires a protein from a novel helicase family. Nature 337:84–87

    Article  ADS  Google Scholar 

  • Serra MJ, Turner DH (1995) Predicting thermodynamic properties of RNA. Methods Enzymol }259:242–261

    Article  Google Scholar 

  • Shan S, Kravchuk AV, Piccirilli JA, Herschlag D (2001) Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction. Biochemistry 40:5161–5171

    Article  Google Scholar 

  • Shaw LC, Lewin AS (1995) Protein-induced folding of a group I intron in cytochrome b pre-mRNA. J Biol Chem 270:21552–21562

    Article  Google Scholar 

  • Shcherbakova I, Brenowitz M (2005) Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure. J Mol Biol 354:483–496

    Article  Google Scholar 

  • Shcherbakova I, Gupta S, Chance MR, Brenowitz M (2004) Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme. J Mol Biol 342:1431–1442

    Article  Google Scholar 

  • Sjogren AS, Pettersson E, Sjoberg BM, Stromberg R (1997) Metal ion interaction with co-substrate in self-splicing of group I introns. Nucleic Acids Res 25:648–653

    Article  Google Scholar 

  • Sosnick TR, Pan T (2003) RNA folding: models and perspectives. Curr Opin Struct Biol 13: 309–316

    Article  Google Scholar 

  • Stahley MR, Strobel SA (2005) Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590

    Article  ADS  Google Scholar 

  • Stahley MR, Adams PL, Wang J, Strobel SA (2007) Structural metals in the group I intron: a ribozyme with a multiple metal ion core. J Mol Biol 372:89–102

    Article  Google Scholar 

  • Steitz TA, Steitz JA (1993) A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 90:6498–6502

    Article  ADS  Google Scholar 

  • Strauss-Soukup JK, Strobel SA (2000) A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme. J Mol Biol 302:339–358

    Article  Google Scholar 

  • Strobel SA, Ortoleva-Donnelly L, Ryder SP, Cate JH, Moncoeur E (1998) Complementary sets of noncanonical base pairs mediate RNA helix packing in the group I intron active site. Nat Struct Biol 5:60–66

    Article  Google Scholar 

  • Suh ER, Waring RB (1990) Base pairing between the 3′ exon and an internal guide sequence increases 3′ splice site specificity in the Tetrahymena self-splicing rRNA intron. Mol Cell Biol 10:2960–2965

    Google Scholar 

  • Swisher JF, Su LJ, Brenowitz M, Anderson VE, Pyle AM (2002) Productive folding to the native state by a group II intron ribozyme. J Mol Biol 315:297–310

    Article  Google Scholar 

  • Szewczak AA, Ortoleva-Donnelly L, Ryder SP, Moncoeur E, Strobel SA (1998) A minor groove RNA triple helix within the catalytic core of a group I intron. Nat Struct Biol 5:1037–1042

    Article  Google Scholar 

  • Szewczak AA, Ortoleva-Donnelly L, Zivarts MV, Oyelere AK, Kazantsev AV, Strobel SA (1999) An important base triple anchors the substrate helix recognition surface within the Tetrahymena ribozyme active site. Proc Natl Acad Sci U S A 96:11183–11188

    Article  ADS  Google Scholar 

  • Tanner M, Cech T (1996) Activity and thermostability of the small self-splicing group I intron in the pre-tRNA(lle) of the purple bacterium Azoarcus. RNA 2:74–83

    Google Scholar 

  • Thirumalai D, Woodson SA (1996) Kinetics of folding of protein and RNA. Acc Chem Res 29:433–439

    Article  Google Scholar 

  • Tijerina P, Bhaskaran H, Russell R (2006) Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone. Proc Natl Acad Sci U S A 103:16698–16703

    Article  ADS  Google Scholar 

  • Tinoco IJ, Bustamante C (1999) How RNA folds. J Mol Biol 293:271–261

    Article  Google Scholar 

  • Treiber DK, Williamson JR (2001a) Beyond kinetic traps in RNA folding. Curr Opin Struct Biol 11:309–314

    Article  Google Scholar 

  • Treiber DK, Williamson JR (2001b) Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction. J Mol Biol 305:11–21

    Article  Google Scholar 

  • Treiber DK, Rook MS, Zarrinkar PP, Williamson JR (1998) Kinetic intermediates trapped by native interactions in RNA folding. Science 279:1943–1946

    Article  ADS  Google Scholar 

  • Van Ommen GJ, Boer PH, Groot GS, De Haan M, Roosendaal E, Grivell LA, Haid A, Schweyen RJ (1980) Mutations affecting RNA splicing and the interaction of gene expression of the yeast mitochondrial loci cob and oxi-3. Cell 20:173–183

    Article  Google Scholar 

  • Waldsich C, Masquida B, Westhof E, Schroeder R (2002) Monitoring intermediate folding states of the td group I intron in vivo. EMBO J 21:5281–5291

    Article  Google Scholar 

  • Wang JF, Downs WD, Cech TR (1993) Movement of the guide sequence during RNA catalysis by a group I ribozyme. Science 260:504–508

    Article  ADS  Google Scholar 

  • Webb AE, Weeks KM (2001) A collapsed state functions to self-chaperone RNA folding into a native ribonucleoprotein complex. Nat Struct Biol 8:135–140

    Article  Google Scholar 

  • Webb AE, Rose MA, Westhof E, Weeks KM (2001a) Protein-dependent transition states for ribo-nucleoprotein assembly. J Mol Biol 309:1087–1100

    Article  Google Scholar 

  • Webb AE, Rose MA, Westhof E, Weeks KM (2001b) Protein-dependent transition states for ribo-nucleoprotein assembly. J Mol Biol 309:1087–1100

    Article  Google Scholar 

  • Weeks KM, Cech TR (1995a) Protein facilitation of group I intron splicing by assembly of the catalytic core and the 5 splice site domain. Cell 82:221–230

    Article  Google Scholar 

  • Weeks KM, Cech TR (1995b) Efficient protein-facilitated splicing of the yeast mitochondrial bI5 intron. Biochemistry 34:7728–7738

    Article  Google Scholar 

  • Weeks KM, Cech TR (1996) Assembly of a ribonucleoprotein catalyst by tertiary structure capture. Science 271:345–348

    Article  ADS  Google Scholar 

  • Weinstein LB, Jones BC, Cosstick R, Cech TR (1997) A second catalytic metal ion in group I ribozyme. Nature 388:805–808

    Article  ADS  Google Scholar 

  • Westhof E, Masquida B, Jaeger L (1996) RNA tectonics: towards RNA design. Fold Des 1: R78–88

    Article  Google Scholar 

  • Woodson SA (2000) Recent insights on RNA folding mechanisms from catalytic RNA. Cell Mol Life Sci 57:796–808

    Article  Google Scholar 

  • Woodson SA (2005a) Structure and assembly of group I introns. Curr Opin Struct Biol

    Google Scholar 

  • Woodson SA (2005b) Metal ions and RNA folding: a highly charged topic with a dynamic future. Curr Opin Chem Biol 9:104–109

    Article  Google Scholar 

  • Xiao M, Leibowitz MJ, Zhang Y (2003) Concerted folding of a Candida ribozyme into the catalyti-cally active structure posterior to a rapid RNA compaction. Nucleic Acids Res 31: 3901–3908

    Article  Google Scholar 

  • Yang Q, Del Campo M, Lambowitz AM, Jankowsky E (2007) DEAD-box proteins unwind duplexes by local strand separation. Mol Cell 28:253–263

    Article  Google Scholar 

  • Yoshioka W, Ikawa Y, Jaeger L, Shiraishi H, Inoue T (2004) Generation of a catalytic module on a self-folding RNA. RNA 10:1900–1906

    Article  Google Scholar 

  • Zarrinkar PP, Williamson JR (1994) Kinetic intermediates in RNA folding. Science 265: 918–924

    Article  ADS  Google Scholar 

  • Zhang L, Xiao M, Lu C, Zhang Y (2005) Fast formation of the P3–P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme. RNA 11:59–69

    Article  Google Scholar 

  • Zhuang X, Bartley LE, Babcock HP, Russell R, Ha T, Herschlag D, Chu S (2000) A single-molecule study of RNA catalysis and folding. Science 288:2048–2051

    Article  ADS  Google Scholar 

Download references

Author information

Authors

Corresponding author

Correspondence to Sarah A. Woodson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woodson, S.A., Chauhan, S. (2009). Group I Ribozymes as a Paradigm for RNA Folding and Evolution. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_7

Download citation

Publish with us

Policies and ethics