Skip to main content

The Small Ribozymes: Common and Diverse Features Observed Through the FRET Lens

  • Chapter
Non-Protein Coding RNAs

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

The hammerhead, hairpin, HDV, VS and glmS ribozymes are the five known, naturally occurring catalytic RNAs classified as the “small ribozymes.” They share common reaction chemistry in cleaving their own backbone by phos-phodiester transfer, but are diverse in their secondary and tertiary structures, indicating that Nature has found at least five independent solutions to a common chemical task. Fluorescence resonance energy transfer (FRET) has been extensively used to detect conformational changes in these ribozymes and dissect their reaction pathways. Common and diverse features are beginning to emerge that, by extension, highlight general biophysical properties of non-protein coding RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Hashimi HM, Walter NG (2008) RNA dynamics: it's about time. Curr Opin Struct Biol 18:321–329

    Google Scholar 

  • Alam S, Grum-Tokars V, Krucinska J, Kundracik ML, Wedekind JE (2005) Conformational heterogeneity at position U37 of an all-RNA hairpin ribozyme with implications for metal binding and the catalytic structure of the S-turn. Biochemistry 44:14396–14408

    Google Scholar 

  • Andersen AA, Collins RA (2000) Rearrangement of a stable RNA secondary structure during VS ribozyme catalysis. Mol Cell 5:469–478

    Google Scholar 

  • Bassi GS, Murchie AI, Walter F, Clegg RM, Lilley DM (1997) Ion-induced folding of the hammerhead ribozyme: a fluorescence resonance energy transfer study. EMBO J 16:7481–7489

    Google Scholar 

  • Bassi GS, Mollegaard NE, Murchie AI, Lilley DM (1999) RNA folding and misfolding of the hammerhead ribozyme. Biochemistry 38:3345–3354

    Google Scholar 

  • Beattie TL, Olive JE, Collins RA (1995) A secondary-structure model for the self-cleaving region of Neurospora VS RNA. Proc Natl Acad Sci U S A 92:4686–4690

    ADS  Google Scholar 

  • Been MD (2006) HDV ribozymes. Curr Top Microbiol Immunol 307:47–65

    Google Scholar 

  • Bevilacqua PC (2003) Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme. Biochemistry 42:2259–2265

    Google Scholar 

  • Bevilacqua PC, Yajima R (2006) Nucleobase catalysis in ribozyme mechanism. Curr Opin Chem Biol 10:455–464

    Google Scholar 

  • Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24:1558–1564

    Google Scholar 

  • Blount KF, Uhlenbeck OC (2005) The structure-function dilemma of the hammerhead ribozyme. Annu Rev Biophys Biomol Struct 34:415–440

    Google Scholar 

  • Bokinsky G, Rueda D, Misra VK, Rhodes MM, Gordus A, Babcock HP, Walter NG, Zhuang X (2003) Single-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci U S A 100:9302–9307

    ADS  Google Scholar 

  • Bondensgaard K, Mollova ET, Pardi A (2002) The global conformation of the hammerhead ribozyme determined using residual dipolar couplings. Biochemistry 41:11532–11542

    Google Scholar 

  • Cochrane JC, Lipchock S V, Strobel SA (2007) Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem Biol 14:97–105

    Google Scholar 

  • Collins RA, Saville BJ (1990) Independent transfer of mitochondrial chromosomes and plasmids during unstable vegetative fusion in Neurospora. Nature 345:177–179

    ADS  Google Scholar 

  • Collins JA, Irnov I, Baker S, Winkler WC (2007) Mechanism of mRNA destabilization by the glmS ribozyme. Genes Dev 21:3356–3368

    Google Scholar 

  • Coppins RL, Hall KB, Groisman EA (2007) The intricate world of riboswitches. Curr Opin Microbiol 10:176–181

    Google Scholar 

  • Curtis EA, Bartel DP (2001) The hammerhead cleavage reaction in monovalent cations. RNA 7:546–552

    Google Scholar 

  • Das S, Piccirilli J (2005) General acid catalysis by the hepatitis delta virus ribozyme. Nat Chem Biol 1:45–52

    Google Scholar 

  • De la Pena M, Gago S, Flores R (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561–5570

    Google Scholar 

  • Ditzler MA, Aleman EA, Rueda D, Walter NG (2007) Focus on function: single molecule RNA enzymology. Biopolymers 87:302–316

    Google Scholar 

  • Doudna JA, Lorsch JR (2005) Ribozyme catalysis: not different, just worse. Nat Struct Mol Biol 12:395–402

    Google Scholar 

  • Draper DE, Grilley D, Soto AM (2005) Ions and RNA folding. Annu Rev Biophys Biomol Struct 34:221–243

    Google Scholar 

  • Edwards TE, Klein DJ, Ferre-D'Amare AR (2007) Riboswitches: small-molecule recognition by gene regulatory RNAs. Curr Opin Struct Biol 17:273–279

    Google Scholar 

  • Emilsson GM, Nakamura S, Roth A, Breaker RR (2003) Ribozyme speed limits. RNA 9: 907–918

    Google Scholar 

  • Fedor MJ, Williamson JR (2005) The catalytic diversity of RNAs. Nat Rev Mol Cell Biol 6: 399–412

    Google Scholar 

  • Feldstein PA, Buzayan JM, van Tol H, deBear J, Gough GR, Gilham PT, Bruening G (1990) Specific association between an endoribonucleolytic sequence from a satellite RNA and a substrate analogue containing a 2′–5′ phosphodiester. Proc Natl Acad Sci U S A 87: 2623–2627

    ADS  Google Scholar 

  • Ferre-D'Amare AR, Doudna JA (2000) Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J Mol Biol 295:541–556

    Google Scholar 

  • Ferre-D'Amare AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395:567–574

    ADS  Google Scholar 

  • Flores R, Delgado S, Gas ME, Carbonell A, Molina D, Gago S, De la Pena M (2004) Viroids: the minimal non-coding RNAs with autonomous replication. FEBS Lett 567:42–48

    Google Scholar 

  • Förster T (1946) Energiewanderung Und Fluoreszenz. Naturwissenschaften 33:166–175

    ADS  Google Scholar 

  • Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys (Leipzig) 2:55–75

    MATH  Google Scholar 

  • Forster AC, Symons RH (1987) Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell 50:9–16

    Google Scholar 

  • Furtig B, Richter C, Schell P, Wenter P, Pitsch S, Schwalbe H (2008) NMR-spectroscopic characterisation of phosphodiester bond cleavage catalysed by the minimal hammerhead ribozyme. RNA Biol 5:41–48

    Google Scholar 

  • Gong B, Chen JH, Chase E, Chadalavada DM, Yajima R, Golden BL, Bevilacqua PC, Carey PR (2007) Direct measurement of a pK(a) near neutrality for the catalytic cytosine in the genomic HDV ribozyme using Raman crystallography. J Am Chem Soc 129:13335–13342

    Google Scholar 

  • Guerrier-Takada C, Gardiner K, Marsh T, Pace N, Altman S (1983) The RNA moiety of ribonu-clease P is the catalytic subunit of the enzyme. Cell 35:849–857

    Google Scholar 

  • Hammann C, Lilley DM (2002) Folding and activity of the hammerhead ribozyme. Chembiochem 3:690–700

    Google Scholar 

  • Hammes-Schiffer S, Benkovic SJ (2006) Relating protein motion to catalysis. Annu Rev Biochem 75:519–541

    Google Scholar 

  • Hampel A, Cowan JA (1997) A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem Biol 4:513–517

    Google Scholar 

  • Hampel KJ, Tinsley MM (2006) Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45:7861–7871

    Google Scholar 

  • Haran G (2004) Noise reduction in single-molecule fluorescence trajectories of folding proteins. Chem Phys 307:137–145

    ADS  Google Scholar 

  • Harris DA, Rueda D, Walter NG (2002) Local conformational changes in the catalytic core of the trans-acting hepatitis delta virus ribozyme accompany catalysis. Biochemistry 41: 12051–12061

    Google Scholar 

  • Haseloff J, Gerlach WL (1989) Sequences required for self-catalysed cleavage of the satellite RNA of tobacco ringspot virus. Gene 82:43–52

    Google Scholar 

  • Hiley SL, Collins RA (2001) Rapid formation of a solvent-inaccessible core in the Neurospora Varkud satellite ribozyme. EMBO J 20:5461–5469

    Google Scholar 

  • Hiley SL, Sood VD, Fan J, Collins RA (2002) 4-thio-U cross-linking identifies the active site of the VS ribozyme. EMBO J 21:4691–4698

    Google Scholar 

  • Jaikaran D, Smith MD, Mehdizadeh R, Olive J, Collins RA (2008) An important role of G638 in the cis-cleavage reaction of the Neurospora VS ribozyme revealed by a novel nucleotide analog incorporation method. RNA 14:938–949

    Google Scholar 

  • Jeong S, Sefcikova J, Tinsley RA, Rueda D, Walter NG (2003) Trans-acting hepatitis delta virus ribozyme: catalytic core and global structure are dependent on the 5′ substrate sequence. Biochemistry 42:7727–7740

    Google Scholar 

  • Kaukinen U, Lyytikainen S, Mikkola S, Lonnberg H (2002) The reactivity of phosphodiester bonds within linear single-stranded oligoribonucleotides is strongly dependent on the base sequence. Nucleic Acids Res 30:468–474

    Google Scholar 

  • Ke A, Zhou K, Ding F, Cate JH, Doudna JA (2004) A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429:201–205

    ADS  Google Scholar 

  • Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Google Scholar 

  • Klein DJ, Ferre-D'Amare AR (2006) Structural basis of glmS ribozyme activation by glu-cosamine-6-phosphate. Science 313:1752–1756

    ADS  Google Scholar 

  • Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157

    Google Scholar 

  • Kuzmin YI, Da Costa CP, Fedor MJ (2004) Role of an active site guanine in hairpin ribozyme catalysis probed by exogenous nucleobase rescue. J Mol Biol 340:233–251[

    Google Scholar 

  • Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ (2005) Role of an active site adenine in hairpin ribozyme catalysis. J Mol Biol 349:989–1010

    Google Scholar 

  • Lafontaine DA, Norman DG, Lilley DM (2001) Structure, folding and activity of the VS ribozyme: importance of the 2- 3–6 helical junction. EMBO J 20:1415–1424

    Google Scholar 

  • Lafontaine DA, Norman DG, Lilley DM (2002) The global structure of the VS ribozyme. EMBO J 21:2461–2471

    Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  • Liu S, Bokinsky G, Walter NG, Zhuang X (2007) Dissecting the multistep reaction pathway of an RNA enzyme by single-molecule kinetic “fingerprinting”. Proc Natl Acad Sci U S A 104:12634–12639

    ADS  Google Scholar 

  • Luptak A, Ferre-D'Amare AR, Zhou K, Zilm KW, Doudna JA (2001) Direct pK(a) measurement of the active-site cytosine in a genomic hepatitis delta virus ribozyme. J Am Chem Soc 123:8447–8452

    Google Scholar 

  • Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320

    Google Scholar 

  • Martick M, Lee TS, York DM, Scott WG (2008a) Solvent structure and hammerhead ribozyme catalysis. Chem Biol 15:332–342

    Google Scholar 

  • Martick M, Horan LH, Noller HF, Scott WG (2008b) A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA. Nature 454:899–902

    ADS  Google Scholar 

  • McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA (2005) Ligand requirements for glmS ribozyme self-cleavage. Chem Biol 12:1221–1226

    Google Scholar 

  • McKay DB (1996) Structure and function of the hammerhead ribozyme: an unfinished story. RNA 2:395–403

    Google Scholar 

  • Min D, Xue S, Li H, Yang W (2007) ‘In-line attack’ conformational effect plays a modest role in an enzyme-catalyzed RNA cleavage: a free energy simulation study. Nucleic Acids Res 35:4001–4006

    Google Scholar 

  • Murchie AI, Thomson JB, Walter F, Lilley DM (1998) Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops. Mol Cell 1:873–881

    Google Scholar 

  • Murray JB, Seyhan AA, Walter NG, Burke JM, Scott WG (1998) The hammerhead, hairpin and VS ribozymes are catalytically proficient in monovalent cations alone. Chem Biol 5:587–595

    Google Scholar 

  • Nahas MK, Wilson TJ, Hohng S, Jarvie K, Lilley DM, Ha T (2004) Observation of internal cleavage and ligation reactions of a ribozyme. Nat Struct Mol Biol 11:1107–1113

    Google Scholar 

  • Nakano S, Bevilacqua PC (2007) Mechanistic characterization of the HDV genomic ribozyme: a mutant of the C41 motif provides insight into the positioning and thermodynamic linkage of metal ions and protons. Biochemistry 46:3001–3012

    Google Scholar 

  • Nakano S, Chadalavada DM, Bevilacqua PC (2000) General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287:1493–1497

    ADS  Google Scholar 

  • Nakano S, Cerrone AL, Bevilacqua PC (2003) Mechanistic characterization of the HDV genomic ribozyme: classifying the catalytic and structural metal ion sites within a multichannel reaction mechanism. Biochemistry 42:2982–2994

    Google Scholar 

  • Nelson JA, Uhlenbeck OC (2006) When to believe what you see. Mol Cell 23:447–450

    Google Scholar 

  • Nelson JA, Uhlenbeck OC (2008a) Hammerhead redux: does the new structure fit the old biochemical data? RNA 14:605–615

    Google Scholar 

  • Nelson JA, Uhlenbeck OC (2008b) Minimal and extended hammerheads utilize a similar dynamic reaction mechanism for catalysis. RNA 14:43–54

    Google Scholar 

  • Nesbitt S, Hegg LA, Fedor MJ (1997) An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol 4:619–630

    Google Scholar 

  • O'Rear JL, Wang S, Feig AL, Beigelman L, Uhlenbeck OC, Herschlag D (2001) Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations. RNA 7(4):537–545

    Google Scholar 

  • Okumus B, Wilson TJ, Lilley DM, Ha T (2004) Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J 87:2798–2806

    Google Scholar 

  • Penedo JC, Wilson TJ, Jayasena SD, Khvorova A, Lilley DM (2004) Folding of the natural hammerhead ribozyme is enhanced by interaction of auxiliary elements. RNA 10:880–888

    Google Scholar 

  • Pereira MJ, Harris DA, Rueda D, Walter NG (2002) Reaction pathway of the trans-acting hepatitis delta virus ribozyme: a conformational change accompanies catalysis. Biochemistry 41: 730–740

    Google Scholar 

  • Pereira MJB, Nikolova EN, Hiley SL, Collins RA, Walter NG (2008) Single VS ribozyme molecules reveal dynamic and hierarchical folding toward catalysis. J Mol Biol 382:496–509

    Google Scholar 

  • Perrotta AT, Been MD (1991) A pseudoknot-like structure required for efficient self-cleavage of hepatitis delta virus RNA. Nature 350:434–436

    ADS  Google Scholar 

  • Perrotta AT, Shih I, Been MD (1999) Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286:123–126

    Google Scholar 

  • Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM (2001) Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. EMBO J 20:6434–6442

    Google Scholar 

  • Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic Processing of Dimeric Plant Virus Satellite RNA. Science 231:1577–1580

    ADS  Google Scholar 

  • Pyle AM (1993) Ribozymes: a distinct class of metalloenzymes. Science 261:709–714

    ADS  Google Scholar 

  • Rastogi T, Beattie TL, Olive JE, Collins RA (1996) A long-range pseudoknot is required for activity of the Neurospora VS ribozyme. EMBO J 15:2820–2825

    Google Scholar 

  • Rhodes MM, Reblova K, Sponer J, Walter NG (2006) Trapped water molecules are essential to structural dynamics and function of a ribozyme. Proc Natl Acad Sci U S A 103:13380–13385

    ADS  Google Scholar 

  • Roth A, Nahvi A, Lee M, Jona I, Breaker RR (2006) Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12:607–619

    Google Scholar 

  • Rueda D, Wick K, McDowell SE, Walter NG (2003) Diffusely bound Mg2+ ions slightly reorient stems I and II of the hammerhead ribozyme to increase the probability of formation of the catalytic core. Biochemistry 42:9924–9936

    Google Scholar 

  • Rueda D, Bokinsky G, Rhodes MM, Rust MJ, Zhuang X, Walter NG (2004) Single-molecule enzymology of RNA: essential functional groups impact catalysis from a distance. Proc Natl Acad Sci U S A 101:10066–10071

    ADS  Google Scholar 

  • Ruffner DE, Stormo GD, Uhlenbeck OC (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29:10695–10702

    Google Scholar 

  • Rupert PB, Ferre-D'Amare AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410:780–786

    ADS  Google Scholar 

  • Rupert PB, Massey AP, Sigurdsson ST, Ferre-D'Amare AR (2002) Transition state stabilization by a catalytic RNA. Science 298:1421–1424

    ADS  Google Scholar 

  • Salehi-Ashtiani K, Szostak JW (2001) In vitro evolution suggests multiple origins for the hammerhead ribozyme. Nature 414:82–84

    ADS  Google Scholar 

  • Salehi-Ashtiani K, Luptak A, Litovchick A, Szostak JW (2006) A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313:1788–1792

    ADS  Google Scholar 

  • Salter J, Krucinska J, Alam S, Grum-Tokars V, Wedekind JE (2006) Water in the active site of an all-RNA hairpin ribozyme and effects of Gua8 base variants on the geometry of phosphoryl transfer. Biochemistry 45:686–700

    Google Scholar 

  • Saville BJ, Collins RA (1990) A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61:685–696

    Google Scholar 

  • Scott WG (2007) Ribozymes. Curr Opin Struct Biol 17:280–286

    Google Scholar 

  • Sefcikova J, Krasovska MV, Sponer J, Walter NG (2007) The genomic HDV ribozyme utilizes a previously unnoticed U-turn motif to accomplish fast site-specific catalysis. Nucleic Acids Res 35:1933–1946

    Google Scholar 

  • Simorre JP, Legault P, Hangar AB, Michiels P, Pardi A (1997) A conformational change in the catalytic core of the hammerhead ribozyme upon cleavage of an RNA substrate. Biochemistry 36:518–525

    Google Scholar 

  • Simorre JP, Legault P, Baidya N, Uhlenbeck OC, Maloney L, Wincott F, Usman N, Beigelman L, Pardi A (1998) Structural variation induced by different nucleotides at the cleavage site of the hammerhead ribozyme. Biochemistry 37:4034–4044

    Google Scholar 

  • Smith MD, Collins RA (2007) Evidence for proton transfer in the rate-limiting step of a fast-cleaving Varkud satellite ribozyme. Proc Natl Acad Sci U S A 104:5818–5823

    ADS  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    Google Scholar 

  • Taylor JM (2006) Structure and replication of hepatitis delta virus RNA. Curr Top Microbiol Immunol 307:1–23

    Google Scholar 

  • Tinsley RA, Walter NG (2007) Long-range impact of peripheral joining elements on structure and function of the hepatitis delta virus ribozyme. Biol Chem 388:705–715

    Google Scholar 

  • Tinsley RA, Harris DA, Walter NG (2004) Magnesium dependence of the amplified conformational switch in the trans-acting hepatitis delta virus ribozyme. Biochemistry 43:8935–8945

    Google Scholar 

  • Tinsley RA, Furchak JR, Walter NG (2007) Trans-acting glmS catalytic riboswitch: locked and loaded. Rna 13:468–477

    Google Scholar 

  • Torelli AT, Krucinska J, Wedekind JE (2007) A comparison of vanadate to a 2′–5′ linkage at the active site of a small ribozyme suggests a role for water in transition-state stabilization. RNA 13:1052–1070

    Google Scholar 

  • Tuschl T, Gohlke C, Jovin TM, Westhof E, Eckstein F (1994) A three-dimensional model for the hammerhead ribozyme based on fluorescence measurements. Science 266:785–789

    ADS  Google Scholar 

  • Walter NG (2001) Structural dynamics of catalytic RNA highlighted by fluorescence resonance energy transfer. Methods 25:19–30

    Google Scholar 

  • Walter NG (2002) Probing RNA structural dynamics and function by fluorescence resonance energy transfer (FRET). Curr Protoc Nucleic Acid Chem 11.10:11.0.1–0.23

    Google Scholar 

  • Walter NG (2007) Ribozyme catalysis revisited: is water involved? Mol Cell 28:923–929

    Google Scholar 

  • Walter NG, Burke JM (1998) The hairpin ribozyme: structure, assembly and catalysis. Curr Opin Chem Biol 2:24–30

    Google Scholar 

  • Walter F, Murchie AI, Thomson JB, Lilley DM (1998a) Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions. Biochemistry 37:14195–14203

    Google Scholar 

  • Walter F, Murchie AIH, Lilley DMJ (1998b) Folding of the four-way RNA junction of the hairpin ribozyme. Biochemistry 37:17629–17636

    Google Scholar 

  • Walter NG, Hampel KJ, Brown KM, Burke JM (1998c) Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J 17:2378–2391

    Google Scholar 

  • Walter NG, Burke JM, Millar DP (1999) Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nat Struct Biol 6:544–549

    Google Scholar 

  • Walter NG, Huang C, Manzo AJ, Sobhy MA (2008) Do-it-yourself guide: how to use the modern single molecule toolkit. Nat Methods 5:475–489

    Google Scholar 

  • Wedekind JE, McKay DB (1998) Crystallographic structures of the hammerhead ribozyme: relationship to ribozyme folding and catalysis. Annu Rev Biophys Biomol Struct 27:475–502

    Google Scholar 

  • Wilson TJ, Ouellet J, Zhao Z Y, Harusawa S, Araki L, Kurihara T, Lilley DM (2006) Nucleobase catalysis in the hairpin ribozyme. RNA 12:980–987

    Google Scholar 

  • Wilson TJ, McLeod AC, Lilley DM (2007) A guanine nucleobase important for catalysis by the VS ribozyme. Embo J 26:2489–2500

    Google Scholar 

  • Winkler WC, Breaker RR (2005) Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol 59:487–517

    Google Scholar 

  • Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286

    ADS  Google Scholar 

  • Young KJ, Gill F, Grasby JA (1997) Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res 25:3760–3766

    Google Scholar 

  • Zhou DM, Taira K (1998) The hydrolysis of RNA: from theoretical calculations to the hammerhead ribozyme-mediated cleavage of RNA. Chem Rev 98:991–1026

    Google Scholar 

  • Zhuang X (2005) Single-molecule RNA science. Annu Rev Biophys Biomol Struct 34:399–414

    MathSciNet  Google Scholar 

  • Zhuang X, Kim H, Pereira MJ, Babcock HP, Walter NG, Chu S (2002) Correlating structural dynamics and function in single ribozyme molecules. Science 296:1473–1476

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils G. Walter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Walter, N.G., Perumal, S. (2009). The Small Ribozymes: Common and Diverse Features Observed Through the FRET Lens. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_5

Download citation

Publish with us

Policies and ethics