Skip to main content

Biophysical Analyses of IRES RNAs from the Dicistroviridae: Linking Architecture to Function

  • Chapter
  • 1192 Accesses

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

Abstract

Internal ribosome entry sites (IRES) are non-protein coding RNAs that can drive translation initiation using RNA in place of protein factors and the modified nucleotide cap. IRESs are critical for successful infection by many viruses and may be an important means of regulating gene expression in healthy cells, yet our understanding of their structure-based mechanism of action remains incomplete. A critical part of understanding their function is knowledge of the biophysical properties of the free IRES RNA itself, as the architecture of the unbound RNA is likely to be a key functional determinant. This chapter presents the application of several biophysical methods to the study of an IRES RNA. Comparing the results of these studies to those performed on a different IRES RNA suggests the biophysical properties of these two IRES RNAs both reflect and predict their mode of interacting with the ribosome

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

IRES:

internal ribosome entry site

UTR:

untranslated region

ORF:

open reading frame

IGR:

intergenic region

HCV:

hepatitis C virus

eIF:

eukaryotic initiation factor

mRNA:

messenger RNA

ITAF:

IRES trans-activating factors

EMCV:

encephalomyocarditis virus

HAV:

hepatitis A virus

FMDV:

footand-mouth disease virus

HIV-1:

human immunodeficiency virus-1

DMS:

dimethysulfate

Kethoxyl:

β-ethoxy-a-ketobutyraldehyde

CMCT:

1-cyclohexyl-3-(morpholinoethyl)-carbodiimide metho-p-toluene sulfonate

RNase:

ribonuclease

SHAPE:

selective 2′-hydroxyl acylation analyzed by primer extension

ENU:

ethylnitrosourea

tRNA:

transfer RNA

cryo-EM:

cryo-electron microscopy

SV/AUC:

sedimentation velocity analytical ultracentrifugation

References

  • Boehringer D, Thermann R, et al. (2005) Structure of the hepatitis C Virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. Structure 13:1695–1706

    Article  Google Scholar 

  • Borman A, Jackson RJ (1992) Initiation of translation of human rhinovirus RNA: mapping the internal ribosome entry site. Virology 188:685–696

    Article  Google Scholar 

  • Brasey A, Lopez-Lastra M, et al. (2003) The leader of human immunodeficiency virus type 1 genomic RNA harbors an internal ribosome entry segment that is active during the G2/M phase of the cell cycle. J Virol 77:3939–3949

    Article  Google Scholar 

  • Brenowitz M, Chance MR, et al. (2002) Probing the structural dynamics of nucleic acids by quantitative time-resolved and equilibrium hydroxyl radical “footprinting”. Curr Opin Struct Biol 12:648–653

    Article  Google Scholar 

  • Buck CB, Shen X, et al. (2001) The human immunodeficiency virus type 1 gag gene encodes an internal ribosome entry site. J Virol 75:181–191

    Article  Google Scholar 

  • Cevallos RC, Sarnow P (2005) Factor-independent assembly of elongation-competent ribosomes by an internal ribosome entry site located in an RNA virus that infects penaeid shrimp. J Virol 79:677–683

    Article  Google Scholar 

  • Costantino D, Kieft JS (2005) A preformed compact ribosome-binding domain in the cricket paralysis-like virus IRES RNAs. RNA 11:332–343

    Article  Google Scholar 

  • Costantino DA, Pfingsten JS, et al. (2008) tRNA-mRNA mimicry drives translation initiation from a viral IRES. Nat Struct Mol Biol 15:57–64

    Article  Google Scholar 

  • Deras ML, Brenowitz M, et al. (2000) Folding mechanism of the Tetrahymena ribozyme P4-P6 domain. Biochemistry 39:10975–10985

    Article  Google Scholar 

  • Ehresmann C, Baudin F, et al. (1987) Probing the structure of RNAs in solution. Nucleic Acids Res 15:9109–9128

    Article  Google Scholar 

  • Glass MJ, Summers DF (1992) A cis-acting element within the hepatitis A virus 5′-non-coding region required for in vitro translation. Virus Res 26:15–31

    Article  Google Scholar 

  • Hatakeyama Y, Shibuya N, et al. (2004) Structural variant of the intergenic internal ribosome entry site elements in dicistroviruses and computational search for their counterparts. RNA10:779–786

    Article  Google Scholar 

  • Hellen CU, Sarnow P (2001) Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593–1612

    Article  Google Scholar 

  • Jackson RJ (2005) Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33:1231–1241

    Article  Google Scholar 

  • Jackson RJ, Kaminski A (1995) Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1:985–1000

    Google Scholar 

  • Jan E (2006) Divergent IRES elements in invertebrates. Virus Res 119:16–28

    Article  Google Scholar 

  • Jan E, Sarnow P (2002) Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J Mol Biol 324:889–902

    Article  Google Scholar 

  • Jan E, Thompson SR, et al. (2001) Initiator Met-tRNA-independent translation mediated by an internal ribosome entry site element in cricket paralysis virus-like insect viruses. Cold Spring Harb Symp Quant Biol 66:285–292

    Article  Google Scholar 

  • Jan E, Kinzy TG, et al. (2003) Divergent tRNA-like element supports initiation, elongation, and termination of protein biosynthesis. Proc Natl Acad Sci U S A 100:15410–15415

    Article  ADS  Google Scholar 

  • Jang SK, Krausslich HG, et al. (1988) A segment of the 5′ nontranslated region of encephalomyo-carditis virus RNA directs internal entry of ribosomes during in vitro translation. J Virol 62:2636–2643

    Google Scholar 

  • Kanamori Y, Nakashima N (2001) A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. RNA 7:266–274

    Article  Google Scholar 

  • Kapp LD, Lorsch JR (2004) The molecular mechanics of eukaryotic translation. Annu Rev Biochem 73:657–704

    Article  Google Scholar 

  • Kieft JS, Costantino DA, et al. (2007) Structural methods for studying IRES function. Methods Enzymol 430:333–371

    Article  Google Scholar 

  • Kieft JS, Zhou K, et al. (1999) The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 292:513–529

    Article  Google Scholar 

  • Kuhn R, Luz N, et al. (1990) Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J Virol 64:4625–4631

    Google Scholar 

  • Lebowitz J, Lewis MS, et al. (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    Article  Google Scholar 

  • Mathews MB, Sonenberg N, et al. (2000) Origins and principles of translational control. In: Sonenberg N, Hershey JWB and Mathews MB (eds.) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp. 1–31

    Google Scholar 

  • Merino EJ, Wilkinson KA, et al. (2005) RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J Am Chem Soc 127:4223–4231

    Article  Google Scholar 

  • Nishiyama T, Yamamoto H, et al. (2003) Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. Nucleic Acids Res 31:2434–2442

    Article  Google Scholar 

  • Otto GA, Lukavsky PJ, et al. (2002) Ribosomal proteins mediate the hepatitis C virus IRES-HeLa 40S interaction. RNA 8:913–923

    Article  Google Scholar 

  • Pelletier J, Sonenberg N (1988) Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320–325

    Article  ADS  Google Scholar 

  • Pestova T V, Hellen CU (2003) Translation elongation after assembly of ribosomes on the Cricket paralysis virus internal ribosomal entry site without initiation factors or initiator tRNA. Genes Dev 17:181–186

    Article  Google Scholar 

  • Pestova T V, Shatsky IN, et al. (1998) A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev 12:67–83

    Article  Google Scholar 

  • Pestova T V, Lomakin IB, et al. (2004) Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep 5:906–913

    Article  Google Scholar 

  • Pfingsten JS, Costantino DA, et al. (2006) Structural basis for ribosome recruitment and manipulation by a viral IRES RNA. Science 314:1450–1454

    Article  ADS  Google Scholar 

  • Pfingsten JS, Costantino DA, et al. (2007) Conservation and diversity among the three- dimensional folds of the Dicistroviridae intergenic region IRESes. J Mol Biol 370:856–869

    Article  Google Scholar 

  • Preiss T, Hentze MW (2003) Starting the protein synthesis machine: eukaryotic translation initiation. BioEssays 25:1201–1211

    Article  Google Scholar 

  • Schuler M, Connell SR, et al. (2006) Structure of the ribosome-bound cricket paralysis virus IRES RNA. Nat Struct Mol Biol 13:1092–1096

    Article  Google Scholar 

  • Shcherbakova I, Brenowitz M (2008) Monitoring structural changes in nucleic acids with single residue spatial and millisecond time resolution by quantitative hydroxyl radical footprinting. Nat Protoc 3:288–302

    Article  Google Scholar 

  • Shcherbakova I, Mitra S, et al (2006) Fast Fenton footprinting: a laboratory-based method for the time-resolved analysis of DNA, RNA and proteins. Nucleic Acids Res 34:e48

    Article  Google Scholar 

  • Siridechadilok B, Fraser CS, et al. (2005) Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310:1513–1515

    Article  ADS  Google Scholar 

  • Spahn CM, Kieft JS, et al. (2001) Hepatitis C virus IRES RNA-induced changes in the conformation of the 40s ribosomal subunit. Science 291:1959–1962

    Article  ADS  Google Scholar 

  • Spahn CM, Jan E, et al. (2004) Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes. The IRES functions as an RNA-based translation factor. Cell 118:465–475

    Article  Google Scholar 

  • Stoneley M, Willis AE (2004) Cellular internal ribosome entry segments: structures, trans-acting factors and regulation of gene expression. Oncogene 23:3200–3207

    Article  Google Scholar 

  • Takamoto K, He Q, et al. (2002) Monovalent cations mediate formation of native tertiary structure of the Tetrahymena thermophila ribozyme. Nat Struct Biol 9:928–933

    Article  Google Scholar 

  • Tsukiyama-Kohara K, Iizuka N, et al. (1992) Internal ribosome entry site within Hepatitis C virus RNA. J Virol 66:1476–1483

    Google Scholar 

  • Tullius TD, Greenbaum JA (2005) Mapping nucleic acid structure by hydroxyl radical cleavage.Curr Opin Chem Biol 9:127–134

    Article  Google Scholar 

  • Wang C, Sarnow P, et al. (1993) Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67:3338–3344

    Google Scholar 

  • Wilkinson KA, Merino EJ, et al. (2006) Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution. Nat Protoc 1:1610–1616

    Article  Google Scholar 

  • Wilson JE, Pestova T V, et al. (2000) Initiation of protein synthesis from the A site of the ribosome.Cell 102:511–520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey S. Kief .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kief, J.S. (2009). Biophysical Analyses of IRES RNAs from the Dicistroviridae: Linking Architecture to Function. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_16

Download citation

Publish with us

Policies and ethics