Skip to main content

Forms and Functions of Telomerase RNA

  • Chapter
Non-Protein Coding RNAs

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 13))

Telomerase adds single-stranded telomeric DNA repeats to chromosome ends. Unlike other polymerases involved in genome replication, telomerase synthe¬sizes DNA without use of a DNA template. Instead, the enzyme active site copies a template carried within the integral RNA subunit of the telomerase ribonucleo-protein (RNP) complex. In addition to providing a template, telomerase RNA has non-template motifs with critical functions in the catalytic cycle of repeat synthesis. In its complexity of structure and function, telomerase RNA resembles the non-coding RNAs of RNP machines like the ribosome and spliceosome that evolved from catalytic RNAs of the RNA World. However, unlike these RNPs, telomerase evolved its RNP identity after advent of the Protein World. Insights about telomer-ase have broad significance for understanding non-coding RNA biology as well as chromosome end maintenance and human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aigner S, Postberg J, Lipps HJ, Cech TR (2003) The EuplotesLa motif protein p43 has properties of a telomerase-specific subunit. Biochemistry 42:5736–5747

    Article  Google Scholar 

  • Armbruster BN, Banik SSR, Guo C, Smith AC, Counter CM (2001) N-terminal domains of the human telomerase catalytic subunit required for enzyme activity in vivo. Mol Cell Biol 22:7775–7786

    Article  Google Scholar 

  • Autexier C, Greider CW (1995) Boundary elements of theTetrahymenatelomerase RNA template and alignment domains. Genes Dev 9:2227–2239

    Article  Google Scholar 

  • Autexier C, Lue NF (2006) The structure and function of telomerase reverse transcriptase. Annu Rev Biochem 75:493–517

    Article  Google Scholar 

  • Bertuch AA, Lundblad V (2006) The maintenance and masking of chromosome termini. Curr Opin Cell Biol 18:247–253

    Article  Google Scholar 

  • Bosoy D, Peng Y, Mian IS, Lue NF (2003) Conserved N-terminal motifs of telomerase reverse transcriptase required for ribonucleoprotein assembly in vivo. J Biol Chem 278:3882–3890

    Article  Google Scholar 

  • Brown Y, Abraham M, Pearl S, Kabaha MM, Elboher E, Tzfati Y (2007) A critical three-way junction is conserved in budding yeast and vertebrate telomerase RNAs. Nucleic Acids Res 35:6280–6289

    Article  Google Scholar 

  • Bryan TM, Goodrich KJ, Cech TR (2000) Telomerase RNA bound by protein motifs specific to telomerase reverse transcriptase. Mol Cell 6:493–499

    Article  Google Scholar 

  • Bryan TM, Goodrich KJ, Cech TR (2003)Tetrahymenatelomerase is active as a monomer. Mol Biol Cell 14:4794–4804

    Article  Google Scholar 

  • Chakrabarti K, Pearson M, Grate L, Sterne-Weiler T, Deans J, Donohue JP, Ares MJ (2007) Structural RNAs of known and unknown function identified in malaria parasites by comparative genomics and RNA analysis. RNA 13:1923–1939

    Article  Google Scholar 

  • Chapon C, Cech T, Zaug A (1997) Polyadenylation of telomerase RNA in budding yeast. RNA 3:1337–1351

    Google Scholar 

  • Chappell AS, Lundblad V (2004) Structural elements required for association of theSaccharomyces cerevisiaetelomerase RNA with the Est2 reverse transcriptase. Mol Cell Biol 24:7720–7736

    Article  Google Scholar 

  • Chen JL, Greider CW (2003) Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J 22:304–314

    Article  Google Scholar 

  • Chen JL, Greider CW (2004) An emerging consensus for telomerase RNA structure. Proc Natl Acad Sci USA 101:14683–14684

    Article  ADS  Google Scholar 

  • Chen JL, Greider CW (2005) Functional analysis of the pseudoknot structure in human telomerase RNA. Proc Natl Acad Sci U S A 102:8080–8085

    Article  ADS  Google Scholar 

  • Chen JL, Blasco MA, Greider CW (2000) Secondary structure of vertebrate telomerase RNA. Cell 100:503–514

    Article  Google Scholar 

  • Chen JL, Opperman KK, Greider CW (2002) A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA. Nucleic Acids Res 30:592–597

    Article  Google Scholar 

  • Cohn M, Blackburn EH (1995) Telomerase in yeast. Science 269:396–400

    Article  ADS  Google Scholar 

  • Collins K (1999) Ciliate telomerase biochemistry. Annu Rev Biochem 68:187–218

    Article  Google Scholar 

  • Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7:484–494

    Article  Google Scholar 

  • Collins K (2008) Physiological assembly and activity of human telomerase complexes. Mech Ageing Dev 129:91–98

    Article  Google Scholar 

  • Collins K, Gandhi L (1998) The reverse transcriptase component of theTetrahymenatelomeraseribonucleoprotein complex. Proc Natl Acad Sci U S A 95:8485–8490

    Article  ADS  Google Scholar 

  • Collins K, Greider CW (1993) Nucleolytic cleavage and non-processive elongation catalyzed byTetrahymenatelomerase. Genes Dev 7:1364–1376

    Article  Google Scholar 

  • Collins K, Mitchell JR (2002) Telomerase in the human organism. Oncogene 21:564–579

    Article  Google Scholar 

  • Cong YS, Wright WE, Shay JW (2002) Human telomerase and its regulation. Microbiol Mol BiolRev 66:407–425

    Article  Google Scholar 

  • Cristofari G, Adolf E, Reichenbach P, Sikora K, Terns RM, Terns MP, Lingner J (2007) Humantelomerase RNA accumulation in Cajal bodies facilitates telomerase recruitment to telomeresand telomere elongation. Mol Cell 27:882–889

    Article  Google Scholar 

  • Cunningham DD, Collins K (2005) Biological and biochemical functions of RNA in theTetrahymenatelomerase holoenzyme. Mol Cell Biol 25:4442–4454

    Article  Google Scholar 

  • Errington TM, Fu D, Wong JM, Collins K (2008) Disease-associated human telomerase RNA variants show loss of function for telomere synthesis without dominant-negative interference. Mol Cell Biol PMID 18710936

    Google Scholar 

  • Feng J, Funk WD, Wang S, Weinrich SL, Avilion AA, Chiu C, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West M, Harley CB, Andrews WH, Greider CW, Villeponteau B (1995) The RNA component of human telomerase. Science 269:1236–1241

    Article  ADS  Google Scholar 

  • F ö rstemann K, Lingner J (2005) Telomerase limits the extent of base pairing between template RNA and telomeric DNA. EMBO Rep 6:361–366

    Article  Google Scholar 

  • Friedman KL, Cech TR (1999) Essential functions of amino-terminal domains in the yeast telom-erase catalytic subunit revealed by selection for viable mutants. Genes Dev 13:2863–2874

    Article  Google Scholar 

  • Fu D, Collins K (2003) Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell 11:1361–1372

    Article  Google Scholar 

  • Fu D, Collins K (2006) Human telomerase and Cajal body ribonucleoproteins share a unique specificity of Sm protein association. Genes Dev 20:531–536

    Article  Google Scholar 

  • Fu D, Collins K (2007) Purification of human telomerase complexes identifies factors involved in telomerase biogenesis and telomere length regulation. Mol Cell 28:773–785

    Article  Google Scholar 

  • Gallardo F, Olivier C, Dandjinou AT, Wellinger RJ, Chartrand P (2008) TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J 27:748–757

    Article  Google Scholar 

  • Garcia CK, Wright WE, Shay JW (2007) Human diseases of telomerase dysfunction: insights into tissue aging. Nucleic Acids Res 35:7406–7416

    Article  Google Scholar 

  • Gilson E, Geli V (2007) How telomeres are replicated. Nat Rev Mol Cell Biol 8:825 – 838

    Article  Google Scholar 

  • Greider CW (1991) Telomerase is processive. Mol Cell Biol 11:4572 – 4580

    Google Scholar 

  • Greider CW, Blackburn EH (1989) A telomeric sequence in the RNA ofTetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337

    Article  ADS  Google Scholar 

  • Hammond PW, Cech TR (1998)Euplotes telomerase: evidence for limited base-pairing duing primer elongation and dGTP as an effector of translocation. Biochemistry 37:5162–5172

    Article  Google Scholar 

  • Hardy CD, Schultz CS, Collins K (2001) Requirements for the dGTP-dependent repeat addition processivity of recombinantTetrahymena telomerase. J Biol Chem 276:4863–4871

    Article  Google Scholar 

  • Holt SE, Aisner DL, Baur J, Tesmer VM, Dy M, Ouellette M, Trager JB, Morin GB, Toft DO, Shay JW, Wright WE, White MA (1999) Functional requirement of p23 and Hsp90 in telom-erase complexes. Genes Dev 13:817–826

    Article  Google Scholar 

  • Hug N, Lingner J (2006) Telomere length homeostasis. Chromosoma 115:413–425

    Article  Google Scholar 

  • Jacob NK, Kirk KE, Price CM (2003) Generation of telomeric G strand overhangs involves both G and C strand cleavage. Mol Cell 11:1021–1032

    Article  Google Scholar 

  • Jacobs SA, Podell ER, Cech TR (2006) Crystal structure of the essential N-terminal domain of telomerase reverse transcriptase. Nat Struct Mol Biol 13:218–225

    Article  Google Scholar 

  • Jády BE, Bertrand E, Kiss T (2004) Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body-specific localization signal. J Cell Biol 164:647–652

    Article  Google Scholar 

  • Lai CK, Mitchell JR, Collins K (2001) RNA binding domain of telomerase reverse transcriptase. Mol Cell Biol 21:990–1000

    Article  Google Scholar 

  • Lai CK, Miller MC, Collins K (2002) Template boundary definition inTetrahymena telomerase. Genes Dev 16:415–420

    Article  Google Scholar 

  • Lai CK, Miller MC, Collins K (2003) Roles for RNA in telomerase nucleotide and repeat addition processivity. Mol Cell 11:1673–1683

    Article  Google Scholar 

  • Lee SR, Wong JM, Collins K (2003) Human telomerase reverse transcriptase motifs required for elongation of a telomeric substrate. J Biol Chem 278:52531–52536

    Article  Google Scholar 

  • Legassie JD, Jarstfer MB (2006) The unmasking of telomerase. Structure 14:1603–1609

    Article  Google Scholar 

  • Leonardi J, Box JA, Bunch JT, Baumann P (2008) TER1, the RNA subunit of fission yeast telom-erase. Nat Struct Mol Biol 15:26–33

    Article  Google Scholar 

  • Licht JD, Collins K (1999) Telomerase RNA function in recombinantTetrahymena telomerase. Genes Dev 13:1116–1125

    Article  Google Scholar 

  • Lin J, Ly H, Hussain A, Abraham M, Pearl S, Tzfati Y, Parslow TG, Blackburn EH (2004) A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. Proc Natl Acad Sci U S A 101:14713–14718

    Article  ADS  Google Scholar 

  • Lingner J, Hendrick LL, Cech TR (1994) Telomerase RNAs of different ciliates have a common secondary structure and a permuted template. Genes Dev 8:1984–1998

    Article  Google Scholar 

  • Lingner J, Cech TR, Hughes TR, Lundblad V (1997) Three ever shorter telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc Natl Acad Sci U S A 94:11190–11195

    Article  ADS  Google Scholar 

  • Livengood AJ, Zaug AJ, Cech TR (2002) Essential regions ofSaccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol Cell Biol 22:2366–2374

    Article  Google Scholar 

  • Lue NF (2005) A physical and functional constituent of telomerase anchor site. J Biol Chem 280:26586–26591

    Article  Google Scholar 

  • Ly H, Blackburn EH, Parslow TG (2003) Comprehensive structure-function analysis of the core domain of human telomerase RNA. Mol Cell Biol 23:6849–6856

    Article  Google Scholar 

  • Martin-Rivera L, Blasco MA (2001) Identification of functional domains and dominant negative mutations in vertebrate telomerase RNA using an in vivo reconstitution system. J Biol Chem 276:5856–5865

    Article  Google Scholar 

  • Mason DX, Goneska E, Greider CW (2003) Stem-loop IV oftetrahymena telomerase RNA stimulates processivity in trans. Mol Cell Biol 23:5606–5613

    Article  Google Scholar 

  • McCormick-Graham M, Romero DP (1996) A single telomerase RNA is sufficient for the synthesis of variable telomeric DNA repeats in ciliates of the genusParamecium. Mol Cell Biol 16:1871–1879

    Google Scholar 

  • McCormick-Graham M, Haynes WJ, Romero DP (1997) Variable telomeric repeat synthesis inParamecium tetraurelia is consistent with misincorporation by telomerase. EMBO J 16:3233–3242

    Article  Google Scholar 

  • McEachern MJ, Blackburn EH (1995) Runaway telomere elongation caused by telomerase RNA gene mutations. Nature 376:403–409

    Article  ADS  Google Scholar 

  • Miller MC, Collins K (2002) Telomerase recognizes its template by using an adjacent RNA motif. Proc Natl Acad Sci USA 99:6585–6590

    Article  ADS  Google Scholar 

  • Mitchell JR, Collins K (2000) Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase in vivo and in vitro. Mol Cell 6:361–371

    Article  Google Scholar 

  • Mitchell JR, Cheng J, Collins K (1999a) A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19:567–576

    Google Scholar 

  • Mitchell JR, Wood E, Collins K (1999b) A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402:551–555

    Article  ADS  Google Scholar 

  • Moriarty TJ, Marie-Egyptienne DT, Autexier C (2004) Functional organization of repeat addition processivity and DNA synthesis determinants in the human telomerase multimer. Mol Cell Biol 24:3720–3733

    Article  Google Scholar 

  • Morin GB (1989) The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59:521–529

    Article  Google Scholar 

  • Muñoz DP, Collins K (2004) Biochemical properties ofTrypanosoma cruzi telomerase. Nucleic Acids Res 32:5214–5222

    Article  Google Scholar 

  • O'Connor CM, Collins K (2006) A novel RNA binding domain inTetrahymena telomerase p65 initiates hierarchical assembly of telomerase holoenzyme. Mol Cell Biol 26:2029–2036

    Article  Google Scholar 

  • O'Connor CM, Lai CK, Collins K (2005) Two purified domains of telomerase reverse transcriptase reconstitute sequence-specific interactions with RNA. J Biol Chem 280:17533–17539

    Article  Google Scholar 

  • Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I, Garin-Chesa P, Rettig WJ, Damm K, Schnapp A (2002) Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 277:15566–15572

    Article  Google Scholar 

  • Peterson SE, Stellwagen AE, Diede SJ, Singer MS, Haimberger ZW, Johnson CO, Tzoneva M, Gottschling DE (2001) The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat Genet 27:64–67

    Google Scholar 

  • Prathapam R, Witkin KL, O ' Connor CM, Collins K (2005) A telomerase holoenzyme protein enhances telomerase RNA assembly with telomerase reverse transcriptase. Nat Struct Mol Biol 12:252–257

    Article  Google Scholar 

  • Prescott J, Blackburn EH (1997) Functionally interacting telomerase RNAs in the yeast telomerase complex. Genes Dev 11:2790–2800

    Article  Google Scholar 

  • Prowse KR, Avilion AA, Greider CW (1993) Identification of a nonprocessive telomerase activity from mouse cells. Proc Natl Acad Sci U S A 90:1493–1497

    Article  ADS  Google Scholar 

  • Romero DP, Blackburn EH (1991) A conserved secondary structure for telomerase RNA. Cell 67:343–353

    Article  Google Scholar 

  • Romi E, Baran N, Gantman M, Shmoish M, Min B, Collins K, Manor H (2007) High-resolution physical and functional mapping of the template adjacent DNA binding site in catalytically active telomerase. Proc Natl Acad Sci U S A 104:8791–8796

    Article  ADS  Google Scholar 

  • Rouda S, Skordalakes E (2007) Structure of the RNA-binding domain of telomerase: Implications for RNA recognition and binding. Structure 13:1403–1412

    Article  Google Scholar 

  • Schnapp G, Rodi H-P, Rettig WJ, Schnapp A, Damm K (1998) One-step affinity purification protocol for human telomerase. Nucleic Acids Res 26:3311–3313

    Article  Google Scholar 

  • Serrano M, Blasco MA (2007) Cancer and ageing: convergent and divergent mechanisms. Nat Rev Mol Cell Biol 8:715–722

    Article  Google Scholar 

  • Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR (1999)Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401:177–180

    Article  ADS  Google Scholar 

  • Seto AG, Livengood AJ, Tzfati Y, Blackburn EH, Cech TR (2002) A bulged stem tethers Est1p to telomerase RNA in budding yeast. Genes Dev 16:2800–2812

    Article  Google Scholar 

  • Seto AG, Umansky K, Tzfati Y, Zaug AJ, Blackburn EH, Cech TR (2003) A template-proximal RNA paired element contributes toSaccharomyces cerevisiae telomerase activity. RNA 9:1323–1332

    Article  Google Scholar 

  • Shay JW, Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5:577–584

    Article  Google Scholar 

  • Shefer K, Brown Y, Gorkovoy V, Nussbaum T, Ulyanov NB, Tzfati Y (2007) A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol Cell Biol 27:2130–2143

    Article  Google Scholar 

  • Singer MS, Gottschling DE (1994) TLC1: template RNA component ofSaccharomyces cerevisiae telomerase. Science 266:404–409

    Article  ADS  Google Scholar 

  • Sperger JM, Cech TR (2001) A stem-loop ofTetrahymena telomerase RNA distant from the template potentiates RNA folding and telomerase activity. Biochemistry 40:7005–7016

    Article  Google Scholar 

  • Stone MS, Mihalusova M, O ' Connor CM, Prathapam R, Collins K, Zhuang X (2007) Stepwise protein-mediated RNA folding directs assembly of telomerase ribonucleoprotein. Nature 446:458–461

    Article  ADS  Google Scholar 

  • Theimer CA, Feigon J (2006) Structure and function of telomerase RNA. Curr Opin Struct Biol 16:307–318

    Article  Google Scholar 

  • Theimer CA, Blois CA, Feigon J (2005) Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol Cell 17:671–682

    Article  Google Scholar 

  • Tzfati Y, Fulton TB, Roy J, Blackburn EH (2000) Template boundary in a yeast telomerase specified by RNA structure. Science 288:863–867

    Article  ADS  Google Scholar 

  • Tzfati Y, Knight Z, Roy J, Blackburn EH (2003) A novel pseudoknot element is essential for the action of a yeast telomerase. Genes Dev 17:1779–1788

    Article  Google Scholar 

  • Ueda CT, Roberts RW (2004) Analysis of a long-range interaction between conserved domains of human telomerase RNA. RNA 10:139–147

    Article  Google Scholar 

  • Verdun RE, Karlseder J (2007) Replication and protection of telomeres. Nature 447:924–931

    Article  ADS  Google Scholar 

  • Vulliamy TJ, Dokal I (2007) Dyskeratosis congenita: the diverse clinical presentation of mutations in the telomerase complex. Biochimie 90:122–130

    Article  Google Scholar 

  • Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I (2001) The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432–435

    Article  ADS  Google Scholar 

  • Wang H, Blackburn EH (1997) De novo telomere addition byTetrahymena telomerase in vitro. EMBO J 16:866–879

    Article  Google Scholar 

  • Wang H, Gilley D, Blackburn EH (1998) A novel specificity for the primer-template pairing requirement inTetrahymena telomerase. EMBO J 17:1152–1160

    Article  Google Scholar 

  • Webb CJ, Zakian VA (2008) Identification and characterization of theSchizosaccharomyces pombe TER1 telomerase RNA. Nat Struct Mol Biol 15:34–42

    Article  Google Scholar 

  • Weinrich SL, Pruzan R, Ma L, Ouellette M, Tesmer VM, Holt SE, Bodnar AG, Lichsteiner S, Kim NW, Trager JB, Taylor RD, Carlos R, Andrews WH, Wright WE, Shay JW, Harley CB, Morin GB (1997) Reconstitution of human telomerase with the template RNA component hTR and the catalytic protein subunit hTRT. Nat Genet 17:498–502

    Article  Google Scholar 

  • Westin ER, Chavez E, Lee KM, Gourronc FA, Riley S, Lansdorp PM, Goldman FD, Klingelhutz AJ (2007) Telomere restoration and extension of proliferative lifespan in dyskeratosis congenita fibroblasts. Aging Cell 6:383–394

    Article  Google Scholar 

  • Witkin KL, Collins K (2004) Holoenzyme proteins required for the physiological assembly and activity of telomerase. Genes Dev 18:1107–1118

    Article  Google Scholar 

  • Wong JMY, Collins K (2003) Telomere maintenance and disease. Lancet 362:983–988

    Article  Google Scholar 

  • Wong JMY, Collins K (2006) Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev 20:2848–2858

    Article  Google Scholar 

  • Ye AJ, Romero DP (2002) Phylogenetic relationships amongst tetrahymenine ciliates inferred by a comparison of telomerase RNAs. Int J Syst Evol Microbiol 52:2297–2302

    Article  Google Scholar 

  • Yu G, Blackburn EH (1991) Developmentally programmed healing of chromosomes by telomerase inTetrahymena . Cell 67:823–832

    Article  Google Scholar 

  • Yu Bradley JD, Attardi LD, Blackburn EH (1990) In vivo alteration of telomere sequences and senescence caused by mutatedTetrahymena telomerase RNAs. Nature 344:126–132

    Article  ADS  Google Scholar 

  • Zappulla DC, Cech TR (2006) RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol 71:217–224

    Article  Google Scholar 

  • Zappulla DC, Goodrich K, Cech TR (2005) A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nat Struct Mol Biol 12:1072–1077

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen Collins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Collins, K. (2009). Forms and Functions of Telomerase RNA. In: Walter, N.G., Woodson, S.A., Batey, R.T. (eds) Non-Protein Coding RNAs. Springer Series in Biophysics, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70840-7_14

Download citation

Publish with us

Policies and ethics